scholarly journals Effect of Aggregate Shapes on the Properties of Concrete

2020 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
E. A Oluwasola ◽  
A Afolayan ◽  
O. O. Ipindola ◽  
M. O Popoola ◽  
A. O Oginni

Aggregates constitute more than 90% of concrete and significantly determine the strength of concrete. In this study, the shape characteristics such as flakiness and elongation were determined using elongation and thickness gauge. The aggregate used for the study is granite. Aggregate crushing value and aggregate impact value tests were performed on the aggregate while slump test, water absorption test, compressive strength test and flexural strength test were carried out on concrete. A total of one hundred and thirty-two concrete cubes were produced using 1:2:4 and 1:3:6 mix each for the compressive strength test and forty-eight reinforced concrete beams were produced for flexural strength test. The slump for all the samples tested was examined to be true. The compressive strength of the concrete cube was greatly affected by the shape of aggregate used and it was noted that; for lower percentage of flaky and elongated aggregate the compressive strength is moderately high compared to when the percentage is high. The highest obtained compressive strength, 15N/mm2 is in compliance with the concrete compressive strength of normal 1:2:4 mix as stipulated in ASTM C109, Also, with 30% of elongated aggregate and 30% of flaky, the flexural strength of 7.03 N/mm2 was obtained. This shows that aggregate shape is a very important property of coarse aggregate that must be put into consideration in production of quality concrete for construction works.

2019 ◽  
Vol 958 ◽  
pp. 35-40
Author(s):  
Fernanda C.M. Esmanhotto ◽  
Matheus C. Mota ◽  
Hugo R.A.S. da Silva ◽  
Victor H.P. Moutinho ◽  
Alexandre Zaccaron ◽  
...  

The study aims to evaluate the technical properties of the application of filler element for slab as a hollow ceramic blocks for non-load-bearing masonry. This ceramic product has dimensions of approximately 6.5x25x81.5 cm, and because it presents different geometries of the conventional ceramic block and characteristics different from those required by the norm, this product was submitted to the norms of non-load-bearing masonry and being carried out tests of geometry, water absorption and compressive strength, besides the visual characteristics according to the standard ABNT NBR 15270/2005. Thirteen samples were used for the geometry and compressive strength test, and six for the water absorption test. Some samples presented a great deviation from the square, besides not being within the established limits of the planes and septa. The water absorption is within the established limits and compressive strength is lower than that required by the standard.


2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


2011 ◽  
Vol 2 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Borhan M.M. ◽  
Mohamed Sutan N.

This study investigates the effects of polymer additives namely polyvinyl acetate (PVAc) on water absorption and compressive strength of mortar. Twelve mortar mixtures were investigated for water absorption test and compressive strength test. Results showed that water absorption were inversely proportional to the percentage of PVAc addition. Final analysis showed that addition of PVAc had significant effects on water absorption. Samples with 1%, 3% and 5% addition of PVAc showed an increase of water absorption capacity in comparison to control mortar.


2021 ◽  
Vol 3 (1) ◽  
pp. 33-40
Author(s):  
Lantif Anggrahita Pratama ◽  
Ahmad Hakam Rifqi ◽  
Muhtarom Riyadi

Concrete is the most important part of a construction building. The purpose of this study was to examine how the comparison of physical and mechanical properties and optimum levels of the addition of straight tie wire as an added material with a water-cement ratio of 0.4. The percentage of addition of straight tie wire: 0%, 0.5%, 0.75%, 1.0%, of the total weight of the specimen with a tie-wire length of 8 cm. The test specimens for compressive strength, modulus of elasticity, and split tensile are in the form of a cylinder with a diameter of 15 cm and a height of 30 cm, and the specimen for flexural strength is a block with a length of 50 cm, a width of 10 cm and a height of 10 cm. The results show that the maximum compressive strength test on tie wire occurred at a percentage of 0.75% of 16.56 MPa. The maximum modulus of elasticity in tie wire occurred at a percentage of 0.75% of 15184.56 MPa. The maximum split tensile strength of tie wire occurred in a percentage of 0.75% of 1.165 MPa, and the maximum flexural strength of tie wire occurs at a percentage of 0.75% of 1.950 MPa. The research results concluded that the addition of a straight tie-wire to the concrete mixture could increase the compressive strength, split tensile strength, tensile strength, and elastic modulus of concrete.


Teknika ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Ngudi Hari Crista ◽  
Agus Muldiyanto

<em>The most widely used material as a house wall is red brick, which is relatively cheap and safe to weather compared to other materials. Red bricks are usually in the manufacturing process by traditional means and fabrication. In general red bricks require additional materials of rice husk in the process of making. Much of the "starchy" waste material widely found in Klaten that is not currently utilized, is expected to be used instead of rice husk which is one of the red brick material mixtures.This research will be conducted brick test with mechanical behavior test which includes density test, water absorption test and compressive strength test with red brick made from rice husk mixture as comparison with analysis result of mixture of starch onggok waste. The result of this research is compressive strength of brick with mixture of rice husk larger and has a small water absorption compared with compressive strength of brick with mixture of onggok.</em>


TAMAN VOKASI ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 182
Author(s):  
Agus Priyanto

Abstracts. The supply of wood that is quite durable and of high quality has not been able to meet the needs of building construction at the present time, especially in the future. Sengon wood (Paraserianthes falcataria) is a fast-growing type of plant that has a large increase (volume of wood per hectare per year) which is around 28 - 48 m3 / ha / year. To fulfill various human objectives, the majority of Sengon wood can be collected from the age of 6 years. With the use of lamination technology, wood remnants can be utilized to be made into wooden blocks of various sizes and various shapes. Lamination can make the strength of Sengon wood higher than solid wood beams.The test is carried out by physical and mechanical tests as well as the Sengon wood laminated sliding block test. In testing physical and mechanical properties based on ISO 1975 regulations. Testing of physical properties of Sengon wood includes wood density test and moisture content test. Testing the mechanical properties of Sengon wood includes fiber parallel compressive strength test, fiber perpendicular compressive strength test, tensile strength test, shear strength test and flexural strength test. Testing of Sengon wood laminated sliding blocks to determine the strength of lamination has a variation of 30 MDGL, 40 MDGL and 50 MDGL slurry adhesives with 3 replications of each shear test.The average density of Sengon wood is 0.315 t / m3 and the average moisture content of Sengon wood is 13.539%. The average compressive strength of fibers is 26.85 MPa and the compressive strength of fibers is 9.62 MPa. The average tensile strength of Sengon wood is 61.48 MPa and the average shear strength of Sengon wood is 5.31 MPa. In testing the flexural strength of Sengon wood an average of 43.18 MPa. Testing of Sengon wood laminate sliding block for 30 / MDGL obtained an average of 0.05 kg / mm2. In the shear block 40 / MDGL obtained an average shear strength of 0.02 kg / mm2. For the 50 / MDGL laminate shear block an average shear strength of 0.08 kg / mm2 was obtained.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1939-1944
Author(s):  
Yu Guo Zheng ◽  
Wei Nan Wang ◽  
Yuan Dong Cui ◽  
Si Min Liu ◽  
Yong Zhang

Considering the essential influencing factors for the mechanical properties of the engineered cementitious composite (ECC), the polyvinyl alcohol (PVA) fiber was used and a batch of cube specimens and thin plate specimens of PVA-ECC were manufactured based on the variation of water cement ratio, amount of fly ash and amount of water reducer. The compressive strength test for the PVA-ECC cube specimens and the flexural strength test for the PVA-ECC thin plate specimens were conducted. A practical decision-making frame based on the Analytic Hierarchy Process (AHP) method was proposed to solve the problem of the optimal mix proportion of PVA-ECC, which can take into account the compressive strength, the flexural strength and the corresponding deformation capacity together.


2019 ◽  
Vol 258 ◽  
pp. 01024 ◽  
Author(s):  
Teddy Tambunan ◽  
Mohd. Irwan Juki ◽  
Norzila Othman

In construction, concrete durability is an important material globally used in engineering, material of which can be applied in the fields of specialized marine construction. The ingress of chloride into concrete causes deterioration in the concrete due to the reinforcement corrosion. Adding bacteria into concrete can improve material properties and increase durability with mechanism resist chloride ingressed in the concrete . Ingress of Chloride into the concrete of bacteria is particularly suited for applications of chloride ion penetration in concrete. The objective of the research is to determine the effect of adding bacteria into the concrete properties. The bacteria used in this research is locally isolated and enriched to the suite with the concrete environment. The type of the bacteria used is identified as Sulphate Reduction Bacteria (SRB). The SRB added into the concrete mix with concentrations of 3%, 5% and 7%. Whereas, concentration of bacteria water of cement is 0.5. The mechanical properties test conducted with 28th, 56th, 90th, 180th and 360th day of curing period. The test was using cyclic wetting and drying to study the exposure to chloride condition, such as compressive strength, tensile strength and flexural test. Cubes in the size of 150 mm × 150 mm × 150 mm were prepared for compressive strength test and cylinder 150 mm × 300 mm were prepared for the tensile strength test. The flexural strength test was on the prism in the size of 100 mm × 100 mm × 500 mm. The result of compressive strength test shows, that gave significant strength of 66.3 MPa on the 360th day. The tensile strength and flexural strength have a similar trend as compressive strength results, where both results were optimum . The tensile strength test shows that 4.52 MPa tends to control 3.96 MPa. The result of flexural strength test was 8.23 MPa for compared to control of 5.99 MPa. The overall results of the bacteria indicate promising outcome and further study on chloride condition capability is encouraging.


Author(s):  
AL-AZHAR ZAHIR MOHAMMED AL-RUQAISHI ◽  
Omar R. Khaleel

There are multiple industries that generate ceramic in the world. The ceramic waste ends as a landfill; and there is no it’s recycle. Moreover, palm fibers can be used for various purposes such as it can be mixed with mortar in order to minimize cracks. The objective of this study was to investigate the effects of using ceramic waste powder and palm fiber on properties of mortar. OPC is partially replaced with ceramic waste powder with different percentages such as 10%, 20%, and 30% and palm fiber is added with 10% of replacement only at 0.5%, 1% and 1.5% of the weight of cement. The specimens are compared with the reference mix in the water absorption test under 105co for 24/h and compressive strength test after 7 and 14 days. The results showed that the optimum percentage of cement replacement with ceramic powder was 10%. Regarding the fiber, the percentage of water absorption got increased while increasing the fiber. The compressive strength of mortar with fiber was obtained more than the normal. More percentage of fiber led to more strength of mortar.   


Sign in / Sign up

Export Citation Format

Share Document