scholarly journals CoLocateMe: Aggregation-based, Energy, Performance and Cost Aware VM Placement and Consolidation in Heterogeneous IaaS Clouds

Author(s):  
Muhammad Zakarya ◽  
Lee Gillam ◽  
Khaled Salah ◽  
Omer F. Rana ◽  
Santosh Tirunagari ◽  
...  

In many production clouds, with the notable exception of Google, aggregation-based VM placement policies are used to provision datacenter resources energy and performance efficiently. However, if VMs with similar workloads are placed onto the same machines, they might suffer from contention, particularly, if they are competing for similar resources. High levels of resource contention may degrade VMs performance, and, therefore, could potentially increase users' costs and infrastructure's energy consumption. Furthermore, segregation-based methods result in stranded resources and, therefore, less economics. The recent industrial interest in segregating workloads opens new directions for research. In this paper, we demonstrate how aggregation and segregation-based VM placement policies lead to variabilities in energy efficiency, workload performance, and users' costs. We, then, propose various approaches to aggregation-based placement and migration. We investigate through a number of experiments, using Microsoft Azure and Google's workload traces for more than twelve thousand hosts and a million VMs, the impact of placement decisions on energy, performance, and costs. Our extensive simulations and empirical evaluation demonstrate that, for certain workloads, aggregation-based allocation and consolidation is ~9.61% more energy and ~20.0% more performance efficient than segregation-based policies. Moreover, various aggregation metrics, such as runtimes and workload types, offer variations in energy consumption and performance, therefore, users' costs.<br>

2021 ◽  
Author(s):  
Muhammad Zakarya ◽  
Lee Gillam ◽  
Khaled Salah ◽  
Omer F. Rana ◽  
Santosh Tirunagari ◽  
...  

In many production clouds, with the notable exception of Google, aggregation-based VM placement policies are used to provision datacenter resources energy and performance efficiently. However, if VMs with similar workloads are placed onto the same machines, they might suffer from contention, particularly, if they are competing for similar resources. High levels of resource contention may degrade VMs performance, and, therefore, could potentially increase users' costs and infrastructure's energy consumption. Furthermore, segregation-based methods result in stranded resources and, therefore, less economics. The recent industrial interest in segregating workloads opens new directions for research. In this paper, we demonstrate how aggregation and segregation-based VM placement policies lead to variabilities in energy efficiency, workload performance, and users' costs. We, then, propose various approaches to aggregation-based placement and migration. We investigate through a number of experiments, using Microsoft Azure and Google's workload traces for more than twelve thousand hosts and a million VMs, the impact of placement decisions on energy, performance, and costs. Our extensive simulations and empirical evaluation demonstrate that, for certain workloads, aggregation-based allocation and consolidation is ~9.61% more energy and ~20.0% more performance efficient than segregation-based policies. Moreover, various aggregation metrics, such as runtimes and workload types, offer variations in energy consumption and performance, therefore, users' costs.<br>


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2064
Author(s):  
Jin-Hee Kim ◽  
Seong-Koo Son ◽  
Gyeong-Seok Choi ◽  
Young-Tag Kim ◽  
Sung-Bum Kim ◽  
...  

Recently, there have been significant concerns regarding excessive energy use in office buildings with a large window-to-wall ratio (WWR) because of the curtain wall structure. However, prior research has confirmed that the impact of the window area on energy consumption varies depending on building size. A newly proposed window-to-floor ratio (WFR) correlates better with energy consumption in the building. In this paper, we derived the correlation by analyzing a simulation using EnergyPlus, and the results are as follows. In the case of small buildings, the results of this study showed that the WWR and energy requirement increase proportionally, and the smaller the size is, the higher the energy sensitivity will be. However, results also confirmed that this correlation was not established for buildings approximately 3600 m2 or larger. Nevertheless, from analyzing the correlation between the WFR and the energy requirements, it could be deduced that energy required increased proportionally when the WFR was 0.1 or higher. On the other hand, the correlation between WWR, U-value, solar heat gain coefficient (SHGC), and material property values of windows had little effect on energy when the WWR was 20%, and the highest effect was seen at a WWR of 100%. Further, with an SHGC below 0.3, the energy requirement decreased with an increasing WWR, regardless of U-value. In addition, we confirmed the need for in-depth research on the impact of the windows’ U-value, SHGC, and WWR, and this will be verified through future studies. In future studies on window performance, U-value, SHGC, visible light transmittance (VLT), wall U-value as sensitivity variables, and correlation between WFR and building size will be examined.


2019 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Prashanthi Metku ◽  
Ramu Seva ◽  
Minsu Choi

Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC’s accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on the accuracy. The proposed methodology is tested and verified on a stochastic edge detection circuit to showcase its viability. Results prove that the proposed approach offers a 12–60% reduction in execution time and a 12–78% decrease in the energy consumption relative to the conventional counterpart. This excellent scalability between energy and performance could be potentially beneficial to certain application domains such as image processing and machine learning, where power and time-efficient approximation is desired.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5038
Author(s):  
Goopyo Hong ◽  
Chul Kim ◽  
Jun Hong

In commercial buildings, HVAC systems are becoming a primary driver of energy consumption, which already account for 45% of the total building energy consumption. In the previous literature, researchers have studied several energy conservation measures to reduce HVAC system energy consumption. One of the effective ways is an economizer in air-handling units. Therefore, this study quantified the impact of the outdoor air fraction by economizer control type in cooling system loads based on actual air-handling unit operation data in a hospital. The optimal outdoor air fraction and energy performance for economizer control types were calculated and analyzed. The result showed that economizer controls using optimal outdoor air fraction were up to 45% more efficient in cooling loads than existing HVAC operations in the hospital. The energy savings potential was 6–14% of the differential dry-bulb temperature control, 17–27% of the differential enthalpy control, 8–17% of the differential dry-bulb temperature and high-limit differential enthalpy control, and 16–27% of the differential enthalpy and high-limit differential dry-bulb temperature control compared to the no economizer control. The result of this study will contribute to providing a better understanding of economizer controls in the hospital when the building operates in hot-humid climate regions.


2021 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Samten Lhendup

The climate is changing very fast today, and this is not natural. We are experiencing the impact of climate change in many aspects. It is also expected to impact the performance of buildings badly in due course of time. In recent years, many countries started investing to evaluate the energy performances of the buildings and opting for the best suited energy-saving measures. However, this concept may be new in the context of Bhutan. However, the author expects that this new concept may revolutionize the building construction sectors in Bhutan. Many studies show that buildings are one of the world’s largest consumers of energy, and on the other hand, strategies are available to reduce energy consumption. The strategies can be applied right from the design phases for the new buildings and retrofits for the old buildings. In order to apply the best strategies of energy consumption reduction and to understand building energy consumption patterns, an evaluation of the building’s energy performance needs to be carried out.


2021 ◽  
Author(s):  
M.R. Amjath ◽  
◽  
H. Chandanie ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

It has been observed that inefficient buildings consume three to five times more energy than efficient buildings. Subsequently, improving the Energy Efficiency (EE) of existing buildings, which account for a significant portion of the energy consumption of the building sector, has become a top priority. Also, Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems typically account for three-quarters of a building's energy consumption. Hence, focus on the energy efficiency improvements associated with these subsystems is entailed to optimise the energy use of buildings in comparison to other energy consumers. Energy Retrofit (ER) is defined as the main approach in improving the energy efficiency of buildings to achieve energy reduction goals. Nevertheless, there is a general lack of awareness regarding ER. Thus, the purpose of this article is to bridge this research gap by critically reviewing the applicable literature on ER. The paper first analysed the role of retrofits in buildings concerning optimising energy performance. The paper also discusses the implementation process of ER, which includes five steps viz. pre-retrofit survey, energy auditing, and performance assessment, identification of suitable and feasible retrofit options, site implementation and commissioning, and validation and verification. Further, different types of ER applicable to HVAC and lighting systems are discussed. In their endeavor to enhance the EE of existing buildings, practitioners could apply the findings of this study, as a basis to understand the available ER types and as a measure to gauge the efficiency of existing buildings, which will facilitate effective decision-making.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2355-2365
Author(s):  
Veliborka Bogdanovic ◽  
Dusan Randjelovic ◽  
Miomir Vasov ◽  
Marko Ignjatovic ◽  
Jelena Stevanovic

This paper analyzes the impact of Trombe wall construction on heating and cooling demands of building with form (rectangular single-store building of about one hundred square meters area) which is common for individual residential buildings in the Republic of Serbia. Trombe wall, as a representative of a passive solar design, was installed on the south wall of the building. Model of the building was made in the Google SketchUp software, while the results of energy performance were obtained using EnergyPlus and jEplus. Parameters of thermal comfort and climatic data for the area of city of Belgrade, Republic of Serbia, were taken into account. Coverage of the south fa?ade was varied, as well as the thickness of the thermal mass and orientation. Energy consumption of the object is discussed, based on obtained results of the analysis. According to comparative analysis of the above mentioned models it can be concluded that the application of the Trombe wall structure on south side may lead to savings of 33% on heating, but also the higher energy consumption for cooling. Total energy consumption on an annual basis is reduced by using this system.


2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


2020 ◽  
Vol 12 (13) ◽  
pp. 5347
Author(s):  
José Luis Fuentes-Bargues ◽  
José-Luis Vivancos ◽  
Pablo Ferrer-Gisbert ◽  
Miguel Ángel Gimeno-Guillem

The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.


Sign in / Sign up

Export Citation Format

Share Document