scholarly journals Gate Drives generating EMI in the absence of Power Converter loading

Author(s):  
Arnold de Beer

This paper shows how a power converter can generate electromagnetic interference (EMI) through the operation of gate drives only - in the absence of any power conversion. This is due to parasitic capacitances connecting the power semiconductor’s gate to the main circuit. A half bridge converter is used to illustrate this concept. Practical measurements are compared to simulations for an energized and non-energized converter. Even without loading, a converter can exceed regulatory conducted emission EMI limits. This effect is important to consider during the design of converter EMI mitigation - especially for low power converters where the load current is not dominant.

2021 ◽  
Author(s):  
Arnold de Beer

This paper shows how a power converter can generate electromagnetic interference (EMI) through the operation of gate drives only - in the absence of any power conversion. This is due to parasitic capacitances connecting the power semiconductor’s gate to the main circuit. A half bridge converter is used to illustrate this concept. Practical measurements are compared to simulations for an energized and non-energized converter. Even without loading, a converter can exceed regulatory conducted emission EMI limits. This effect is important to consider during the design of converter EMI mitigation - especially for low power converters where the load current is not dominant.


2020 ◽  
Vol 20 (8) ◽  
pp. 4878-4883
Author(s):  
Premkumar Vincent ◽  
Jaewon Jang ◽  
In Man Kang ◽  
Philippe Lang ◽  
Hyeok Kim ◽  
...  

Few reports have researched on utilization of laser power conversion systems for wireless power transfer in aeronautical applications. III–V compound semiconductors are commonly used as photovoltaic (PV) power converters in the previous studies. We propose the prospects of using organic absorbers as PV power converters. For laser power conversion to be applied for portable devices, the PV module should be easily processable, thin, low-weight, and printable on flexible substrates. Organic PVs provide all the above advantages, and thus, could serve as a potential candidate for laser power harvesting applications. Moreover, they can also be made transparent, which could be utilized in power harvesting lamination coatings and windows. We had simulated the possibility of using single-junction and tandem photovoltaic structures for 670 nm and 850 nm laser power harvesting. FDTD simulations were conducted to optimize the PV structure in order to maximize the absorption at the laser wavelengths. A maximum PCE of 16.17% for single-junction PV and 24.85% for tandem PV was theoretically obtained.


2005 ◽  
Vol 2 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Vesna Arnautovski-Toseva ◽  
Yanis Rousset ◽  
El Drissi ◽  
Leonid Grcev

With the continuous increase of switching frequency together with the ongoing trend to higher complexity and functionality, power converters as a part of electronic systems have raised more and more electromagnetic energy pollution to the local system environment. In the same time, stringent demands are imposed on the designers of new circuits that electromagnetic interference (EMI) has to be suppressed at its source before it is allowed to propagate into other circuits and systems. In this paper, the authors present a full-wave numerical method for calculation and simulation of electromagnetic field radiated by power converter circuitry. The main objective is to analyze the layout geometry in order to obtain competitive PCB layout that will enable suitably attenuated level of the radiated electric field to safe level. By this it would be possible to ensure reliable operation of the sensitive electronic components in the proximity.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Shih-Kuen Changchien ◽  
Kun-Li Wen

Analysis of power converter performance has tended to be engineering-oriented, focusing mainly on voltage stability, output power and efficiency improvement. However, there has been little discussion about the weight relations between these factors. In view of the previous inadequacy, this study employs regression, rough set and GM(1,N) to analyze the relations among the factors that affect the converter, with a symmetrical half-bridge power converter serving as an example. The four related affecting factors, including the current conversion ratio, voltage conversion ratio, power conversion ratio and output efficiency, are firstly analyzed and calculated. The respective relative relations between output efficiency and the other three factors are obtained. This research can be referred to by engineers in their design of symmetrical half-bridge power converters.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 701
Author(s):  
Yanchu Li ◽  
Qingqing Ding ◽  
Keyue Li ◽  
Stanimir Valtchev ◽  
Shufang Li ◽  
...  

It is inevitable that high-intensity, wide-spectrum electromagnetic emissions are generated by the power electronic equipment of the Extra High Voltage (EHV) power converter station. The surveillance flight of Unmanned Aerial Vehicles (UAVs) is thus, situated in a complex electromagnetic environment. The ubiquitous electromagnetic interference demands higher electromagnetic protection requirements from the UAV construction and operation. This article is related to the UAVs patrol inspections of the power line in the vicinity of the EHV converter station. The article analyzes the electromagnetic interference characteristics of the converter station equipment in the surrounding space and the impact of the electromagnetic emission on the communication circuits of the UAV. The anti-electromagnetic interference countermeasures strive to eliminate or reduce the threats of electromagnetic emissions on the UAV’s hardware and its communication network.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1568
Author(s):  
Bernhard Wunsch ◽  
Stanislav Skibin ◽  
Ville Forsström ◽  
Ivica Stevanovic

EMC simulations are an indispensable tool to analyze EMC noise propagation in power converters and to assess the best filtering options. In this paper, we first show how to set up EMC simulations of power converters and then we demonstrate their use on the example of an industrial AC motor drive. Broadband models of key power converter components are reviewed and combined into a circuit model of the complete power converter setup enabling detailed EMC analysis. The approach is demonstrated by analyzing the conducted noise emissions of a 75 kW power converter driving a 45 kW motor. Based on the simulations, the critical impedances, the dominant noise propagation, and the most efficient filter component and location within the system are identified. For the analyzed system, maxima of EMC noise are caused by resonances of the long motor cable and can be accurately predicted as functions of type, length, and layout of the motor cable. The common-mode noise at the LISN is shown to have a dominant contribution caused by magnetic coupling between the noisy motor side and the AC input side of the drive. All the predictions are validated by measurements and highlight the benefit of simulation-based EMC analysis and filter design.


2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


Sign in / Sign up

Export Citation Format

Share Document