Evaluation of the Effects of Climate Change on Water Infiltration on Thickened Tailings in the Atacama Region

Author(s):  
Alonso Arriagada ◽  
José Riquelme ◽  
Tiaren Garcia-Perez
Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 26
Author(s):  
Marqués ◽  
Bienes ◽  
Ruiz-Colmenero

The wine captures grapes’ variety nature and vinification techniques, but other aspects of soil, climate and terrain are equally important for the terroir expression as a whole. Soil supplies moisture, nitrogen, and minerals. Particularly nitrogen obtained through mineralization of soil organic matter and water uptake are crucial for grape yield, berry sugar, anthocyanin and tannin concentration, hence grape quality and vineyard profitability. Different climatic conditions, which are predicted for the future, can significantly modify this relationship between vines and soils. New climatic conditions under global warming predict higher temperatures, erratic and extreme rainfall events, and drought spells. These circumstances are particularly worrisome for typical thin soils of the Mediterranean environment. This study reports the effect of permanent grass cover in vineyards to maintain or increase soil organic matter and soil moisture. The influence of natural and simulated rainfalls on soils was studied. A comparison between minimum tillage (MT) and permanent grass cover crop (GC) of the temperate grass Brachypodium distachyon was done. Water infiltration, water holding capacity, organic carbon sequestration and protection from extreme events, were considered in a sloping vineyard located in the south of Madrid, Spain. The MT is the most widely used cultivation method in the area. The tradition supports this management practice to capture and preserve water in soils. It creates small depressions that accumulate water and eventually improves water infiltration. This effect was acknowledged in summer after recent MT cultivation; however, it was only short-lived as surface roughness declined after rainfalls. Especially, intense rainfall events left the surface of bare soil sealed. Consequently, the effects depend on the season of the year. In autumn, a rainy season of the year, MT failed to enhance infiltration. On the contrary, B. distachyon acted as a physical barrier, produced more infiltration (22% increase) and fewer particles detachment, due to increased soil structure stability and soil organic matter (50% increase). The GC efficiently protected soil from high-intensity events (more than 2 mm min-1). Besides, soil moisture at 35 cm depth was enhanced with GC (9% more than tillage). On average, soil moisture in GC was not significantly different from MT. These effects of GC on soil conditions created local micro-environmental conditions that can be considered advantageous as a climate change adaptation strategy, because they improved water balance, maintained a sustainable level of soil organic matter, therefore organic nitrogen, all these factors crucial for improving wine quality.


2017 ◽  
Vol 33 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Marcia DeLonge ◽  
Andrea Basche

AbstractThe potential to improve soils to help farmers and ranchers adapt to and mitigate climate change has generated significant enthusiasm. Within this discussion, grasslands have surfaced as being particularly important, due to their geographic range, their capacity to store substantial quantities of carbon relative to cultivated croplands and their potential role in mitigating droughts and floods. However, leveraging grasslands for climate change mitigation and adaptation will require a better understanding of how farmers and ranchers who rely on them for their livelihoods can improve management and related outcomes. To investigate opportunities for such improvements, we conducted a meta-analysis of field experiments that investigated how soil water infiltration rates are affected by a range of management options: adding complexity to grazing patterns, reducing stocking rates or extended rest from grazing. Further, to explore the relationships between observed changes in soil water infiltration and soil carbon, we identified papers that reported data on both metrics. We found that in 81.9% of all cases, responses of infiltration rates to identified management treatments (response ratios) were above zero, with infiltration rates increasing by 59.3 ± 7.3%. Mean response ratios from unique management categories were not significantly different, although the effect of extended rest (67.9 ± 8.5%, n = 140 from 31 experiments) was slightly higher than from reducing stocking rates (42.0 ± 10.8%; n = 63 from 17 experiments) or adding complexity (34.0 ± 14.1%, n = 17 from 11 experiments). We did not find a significant effect of several other variables, including treatment duration, mean annual precipitation or soil texture; however, analysis of aridity indices suggested that grazing management may have a slightly larger effect in more humid environments. Within our database, we found that 42% of complexity studies, 41% of stocking rate studies and 29% of extended rest studies also reported at least some measure of soil carbon. Within the subset of cases where both infiltration rates and carbon were reported, response ratios were largely positive for both variables (at least 64% of cases had positive mean response ratios in all management categories). Overall, our findings reveal that a variety of management strategies have the potential to improve soil water infiltration rates, with possible benefits for soil carbon as well. However, we identified a shortage of well-replicated and detailed experiments in all grazing management categories, and call for additional research of both soil water and soil carbon properties for these critical agroecosystems.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1943 ◽  
Author(s):  
Enrique Fernández Escalante ◽  
Jon San Sebastián Sauto ◽  
Rodrigo Calero Gil

In this article, the authors will support Managed Aquifer Recharge (MAR) as a tool to combat Climate Change (CC) adverse impacts on the basis of real sites, indicators, and specific cases located Spain. MAR has been used in Spain in combination with other measures of Integrated Water Resources Management (IWRM) to mitigate and adapt to Climate Change (CC) challenges. The main effects of CC are that the rising of the average atmospheric temperature together with the decreasing average annual precipitation rate cause extreme weather and induce sea level rise. These pattern results in a series of negative impacts reflected in an increase of certain events or parameters, such as evaporation, evapotranspiration, water demand, fire risk, run-off, floods, droughts, and saltwater intrusion; and a decrease of others such as availability of water resources, the wetland area, and the hydro-electrical power production. Solutions include underground storage, lowering the temperature, increasing soil humidity, reclaimed water infiltration, punctual and directed infiltration, self-purification and naturalization, off-river storage, wetland restoration and/or establishment, flow water distribution by gravity, power saving, eventual recharge of extreme flows, multi-annual management and positive barrier wells against saline water intrusion. The main advantages and disadvantages for each MAR solution have been addressed. As success must be measured, some indicators have been designed or adopted and calculated to quantify the actual effect of these solutions and their evolution. They have been expressed in the form of volumes, lengths, areas, percentages, grades, euros, CO2 emissions, and years. Therefore, MAR in Spain demonstrably supports its usefulness in battling CC adverse impacts in a broad variety of environments and circumstances. This situation is comparable to other countries where MAR improvements have also been assessed.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Giovanni Pranzini ◽  
Francesco Di Martino ◽  
Ester Della Santa ◽  
Katia Fontanelli ◽  
Gianni Fucci

The authors drafted the water balance of the multi-layer aquifer of the Apuo-Versilia Plain, (Provinces of Lucca and Massa- Carrara) extending for about 152 km2. The water budget, relating to the average year of the period 2010-2012, includes both natural and anthropic terms. Availability of data allowed to calculate with a good approximation some terms (rain water infiltration, groundwater pumping, losses of aqueduct pipelines and sewers) while others (infiltration from water courses, draining of land reclamation systems) have been calculated with methods designed ad hoc but with poor validation. The budget closes with a positive balance of 56 million m3/year, which correspond to the outflow from the aquifer to the sea minus the marine intrusion: there is no data to calculate this term, which we have taken as the unknown term of the balance equation. Therefore, the budget is rough, but it allowed us to estimate the effects of climate change for two decades in the near future (2030-2040 and 2050-2060) according to two emission scenarios, RCP4.5 and RCP8.5: the recharge would be reduced 11% in 2036 and 15% in 2056. In these budgets, we have not considered the variations in anthropic terms because we have no elements to predict them. Climate change, which also will bring about an increasing of marine intrusion, will probably cause a greater use of groundwater. This could alter the balance of the hydrogeological system, which has so far shown a substantial stability, as demonstrated by the monitoring of piezometric levels in the Plain.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1681
Author(s):  
Ahmed M. Abdallah ◽  
Hanuman S. Jat ◽  
Madhu Choudhary ◽  
Emad F. Abdelaty ◽  
Parbodh C. Sharma ◽  
...  

Improving soil water holding capacity (WHC) through conservation agriculture (CA)-practices, i.e., minimum mechanical soil disturbance, crop diversification, and soil mulch cover/crop residue retention, could buffer soil resilience against climate change. CA-practices could increase soil organic carbon (SOC) and alter pore size distribution (PSD); thus, they could improve soil WHC. This paper aims to review to what extent CA-practices can influence soil WHC and water-availability through SOC build-up and the change of the PSD. In general, the sequestered SOC due to the adoption of CA does not translate into a significant increase in soil WHC, because the increase in SOC is limited to the top 5–10 cm, which limits the capacity of SOC to increase the WHC of the whole soil profile. The effect of CA-practices on PSD had a slight effect on soil WHC, because long-term adoption of CA-practices increases macro- and bio-porosity at the expense of the water-holding pores. However, a positive effect of CA-practices on water-saving and availability has been widely reported. Researchers attributed this positive effect to the increase in water infiltration and reduction in evaporation from the soil surface (due to mulching crop residue). In conclusion, the benefits of CA in the SOC and soil WHC requires considering the whole soil profile, not only the top soil layer. The positive effect of CA on water-saving is attributed to increasing water infiltration and reducing evaporation from the soil surface. CA-practices’ effects are more evident in arid and semi-arid regions; therefore, arable-lands in Sub-Sahara Africa, Australia, and South-Asia are expected to benefit more. This review enhances our understanding of the role of SOC and its quantitative effect in increasing water availability and soil resilience to climate change.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document