Aplikasi Deteksi Perubahan Wilayah dengan Menggunakan Metode Post-Classification

2019 ◽  
Vol 3 (1) ◽  
pp. 90-104
Author(s):  
Heri Santoso ◽  
Abdul Halim Hasugian ◽  
Yusuf Ramadhan Nasution

Changes that occur in the region is one of the problems that are considered significant and strategic that occur in each region specifically in the region ofb. one of the important issues for planners and decision makers in urban and regional policies. Data, information, and tools sometimes turn into a burden in the process of detecting changes in land use. Along with advances in technology to detect changes in an area that are usually done manually (visible, ordinary photos), now it has begun to shift to the use of image technology (satellite), where this is caused by satellite technology, enables the detection of regional changes to be carried out on a wide scale, the time required is more effective and effective compared to conventional regional change detection techniques. Change detection (change detection) is a process of identifying changes in the shape of the surface in a vegetation cover or as a spectral / spatial movement of vegetation bodies over time. Among the change detection methods is to use Post-Classification with consideration of the ease of implementation, where this method works by comparing 2 or more temporal images. Keywords: Detection of Regional Change, Post-Classification Method, application.

2020 ◽  
Author(s):  
Jie Zhao ◽  
Marco Chini ◽  
Ramona Pelich ◽  
Patrick Matgen ◽  
Renaud Hostache ◽  
...  

<p>Change detection has been widely used in many flood-mapping algorithms using pairs of Synthetic Aperture Radar (SAR) intensity images. The rationale is that when the right conditions are met, the appearance of floodwater results in a significant decrease of backscatter.  However, limitations still exist in areas where the SAR backscatter is not sufficiently impacted by surface changes due to floodwater. For example, in shadow areas, the backscatter is stable over time because the SAR signal does not reach the ground due to prominent topography or obstacles on the ground (e.g., buildings). Densely vegetated forest is another insensitive region due to low capability of SAR C-band wavelengths to penetrate its canopy. Moreover, although in principle SAR can sense water over different land cover classes such as arid regions, streets and buildings, the backscatter changes over time could not be detected because in such areas the scattering variation caused by the presence of water might be negligible with respect to the normal “unflooded” state. The identification of the abovementioned areas where SAR does not allow detecting water based on change detection methods, hereafter called exclusion map, is crucial for providing reliable SAR-based flood maps.</p><p>In this study, insensitive areas are identified using long time-series of Sentinel-1 data and the final exclusion map is classified in four distinctive classes: shadow, layover, urban areas and dense forest. In the proposed method the identification of insensitive areas is based on the use of pixel-based time series backscatter statistics (minimum, maximum, median and standard deviation) coupled with a local spatial autocorrelation analysis (i.e. Moran’s I, Getis-Ord Gi and Geary’s C). In order to evaluate the extracted exclusion map, which is quite unique, we employ a comprehensive ground truth dataset that is obtained by combining different products: 1) a shadow/layover map generated using a 25m-resolution DEM and the geometric acquisition parameters of the SAR data; 2) 20m resolution imperviousness map provided by Copernicus, as well as a high-resolution global urban footprint (GUF) data provided by DLR; 3) a 20m tree cover density (TCD) map provided by Copernicus. In the end, the exclusion map is used to mask out unclassified areas in the flood maps derived by an automatic change detection method, which is expected to enhance flood maps by removing areas where the presence or absence of floodwater cannot be evidenced. In addition, we argue that our insensitive area map provides valuable information for improving the calibration, validation and regular updating of hydraulic models using SAR derived flood extent maps.</p>


2021 ◽  
Vol 20 (Supp01) ◽  
pp. 2140011
Author(s):  
Rohini Selvaraj ◽  
Suresh Kumar Nagarajan

As the contamination over the surface of the earth is increasing exponentially, the land cover and land use detection techniques are considered as important elements in mapping and monitoring the land degradation. Remote sensing plays a vital role in identifying the land changes over the period of time. As land degradation occurs, resource demand will increase and reliable service to achieve land neutrality will increase. Connected device (IoT) could be used to achieve this neutrality in an intelligent and effective manner. Innumerable change detection methods have been developed for as far back as five decades. These studies deal in detail about the different satellite imagery data, image preprocessing techniques and the discussion of pixel-based and object-based change detection techniques. In addition, the dataset, preprocessing and change detection technique are interrelated with each other and their connection between the techniques are clarified dependent on the element of image analysis. The merits and limitation of different methods are also explained in detail.


Author(s):  
Dimas I. Alves ◽  
Cristian Muller ◽  
Bruna G. Palm ◽  
Mats I. Pettersson ◽  
Viet T. Vu ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Odile Close ◽  
Sophie Petit ◽  
Benjamin Beaumont ◽  
Eric Hallot

Land Use/Cover changes are crucial for the use of sustainable resources and the delivery of ecosystem services. They play an important contribution in the climate change mitigation due to their ability to emit and remove greenhouse gas from the atmosphere. These emissions/removals are subject to an inventory which must be reported annually under the United Nations Framework Convention on Climate Change. This study investigates the use of Sentinel-2 data for analysing lands conversion associated to Land Use, Land Use Change and Forestry sector in the Wallonia region (southern Belgium). This region is characterized by one of the lowest conversion rates across European countries, which constitutes a particular challenge in identifying land changes. The proposed research tests the most commonly used change detection techniques on a bi-temporal and multi-temporal set of mosaics of Sentinel-2 data from the years 2016 and 2018. Our results reveal that land conversion is a very rare phenomenon in Wallonia. All the change detection techniques tested have been found to substantially overestimate the changes. In spite of this moderate results our study has demonstrated the potential of Sentinel-2 regarding land conversion. However, in this specific context of very low magnitude of land conversion in Wallonia, change detection techniques appear to be not sufficient to exceed the signal to noise ratio.


2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2021 ◽  
Vol 12 (2) ◽  
pp. 1-18
Author(s):  
Jessamyn Dahmen ◽  
Diane J. Cook

Anomaly detection techniques can extract a wealth of information about unusual events. Unfortunately, these methods yield an abundance of findings that are not of interest, obscuring relevant anomalies. In this work, we improve upon traditional anomaly detection methods by introducing Isudra, an Indirectly Supervised Detector of Relevant Anomalies from time series data. Isudra employs Bayesian optimization to select time scales, features, base detector algorithms, and algorithm hyperparameters that increase true positive and decrease false positive detection. This optimization is driven by a small amount of example anomalies, driving an indirectly supervised approach to anomaly detection. Additionally, we enhance the approach by introducing a warm-start method that reduces optimization time between similar problems. We validate the feasibility of Isudra to detect clinically relevant behavior anomalies from over 2M sensor readings collected in five smart homes, reflecting 26 health events. Results indicate that indirectly supervised anomaly detection outperforms both supervised and unsupervised algorithms at detecting instances of health-related anomalies such as falls, nocturia, depression, and weakness.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiang Li ◽  
Jianzheng Liu ◽  
Jessica Baron ◽  
Khoa Luu ◽  
Eric Patterson

AbstractRecent attention to facial alignment and landmark detection methods, particularly with application of deep convolutional neural networks, have yielded notable improvements. Neither these neural-network nor more traditional methods, though, have been tested directly regarding performance differences due to camera-lens focal length nor camera viewing angle of subjects systematically across the viewing hemisphere. This work uses photo-realistic, synthesized facial images with varying parameters and corresponding ground-truth landmarks to enable comparison of alignment and landmark detection techniques relative to general performance, performance across focal length, and performance across viewing angle. Recently published high-performing methods along with traditional techniques are compared in regards to these aspects.


2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


Sign in / Sign up

Export Citation Format

Share Document