scholarly journals Assessment of nitrate and its health risk capability in groundwater used by residents around a dumpsite in Lagos, Nigeria

2021 ◽  
Vol 3 (3) ◽  
pp. 75-80
Author(s):  
Joshua Olu

Anthropologic activities in our environment had been continuously associated with the release of nitrate a contaminant that has been linked with some dangerous health effects. This study assessed the concentration and health risk of nitrate in groundwater used by residents around a dumpsite. For this study groundwater samples were obtained randomly from 12 sampling sites near the Solos dumpsite at Igando, Alimosho local government area, Lagos, Nigeria. The water samples were analyzed for nitrate and some other physic-chemical parameters. The water quality index of the water samples was calculated to determine the suitability for consumption purposes. The non-carcinogenic hazard health risk associated with the nitrate level in the water samples was also assessed. The relationship between the nitrate in the water samples and the drinking water quality index (DWQI) was a positive one with r= 0.21 at p=0.517. The hazard index for ingestion (oral) route (HIoral) range were 0.024-0.962, 0.028-1.136 and 0.033-1.3 for male, female and children respectively. The dermal hazard index (HIdermal) shows range of 0.001-0.026 for male, 0.001-0.027 for female and 0.002-0,071 for children. Sample 6 had Total hazard index (HItotal) greater than 1for both female adult and children as 1.163 and 1.371 respectively. All water samples on this study had the presence of nitrate that were positive correlated with water quality index and only one of the samples nitrate concentration was associated with high health non-carcinogenic risk effect especially in children and women.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12487
Author(s):  
Osikemekha Anthony Anani ◽  
John Ovie Olomukoro

Water plays a major role in supporting the wellness and life processes in living things as well as in the ecological structure’s stabilities. However, several environmental scientists have recounted the alarming menace unfit water quality portends as well as the shortfalls of its global utilization in various spheres of life. This study aims to determine the fitness of the Ossiomo River and its likely health risk impact when consumed or used for other domestic purposes. The outcome of the physicochemical and heavy metal characterization showed that most of the parameters surpassed the slated benchmarks. Findings from the study revealed a significant difference (p < 0.05) for water temperature, color, TDS, BOD5, HCO3, Na, Fe, Mn, and THC across the four stations respectively. Meanwhile, pH, salinity, turbidity, TSS, DO, Cl, P, NH4H, NO2, NO3, SO4, Zn, Cu, Cr, Ni, Pb, and V showed no significant (p > 0.05) across the four stations respectively. The pH level of the water was slightly acidic at the range of 4.40–6.82. The outcome of the computed water quality index showed that station 1 (66.38) was poor for human ingestion which was above the set slated benchmarks of 26–50. However, stations 2–4 (163.79, 161.79, and 129.95) were unsuitable for drinking which was above the set slated benchmarks of 100. The outcome of the health risk evaluation revealed that the hazard quotients (HQs) were considered greater than 1 (>1) for Cr (2.55). The hazard index (0.46) via the dermal pathway was <1 while the ingestion (4.35) pathway was >1. The sum of the HQs (4.81) was also > 1. Thus, there are possible non-carcinogenic health risks via direct ingestion of the water. The outcome from the carcinogenic risk for Pb, Cr, and Cd (6 × 10–3, 4.00 × 10–1, and 1.22 × 100), was somewhat greater than the target goal (1.0 × 10–6 to 1.0 × 10–4) of carcinogenic risks stipulated by the United States Environmental Protection Agency for drinking water, respectively, especially for Cd. There might be a potential carcinogenic risk if the water is consumed when the metal contents are higher than the target limits set. Sustainable farming and treatment of wastes from industrial outputs should be the main management of this watercourse.


Author(s):  
Pravin Mevada ◽  
G. R. Jani ◽  
Preksha Patel

The present study deals with Assessment of Physico-Chemical parameters of ground water samples of Kathlal tehsil. Physio-Chemical parameters like EC, Temperature, TDS, Ca2+ , Mg2+ , Na+, K+ ,Cl-, CO32-, HCO3-, SO42- , NO3-, F- were analyzed in this present study. The samples were collected in April-2013 (Summer Season). Total 10 samples of groundwater was carried out from Tube wells/Bore wells of Kathlal Tehsil in order to assess water quality index.


2021 ◽  
Author(s):  
Shivam Saw ◽  
Jaydev Kumar Mahato ◽  
Prasoon Kumar Singh

Abstract The present study assessed the suitability of groundwater by using the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) and the Groundwater Water Quality Index (GWQI) Model. Six heavy metals viz. arsenic (As), Iron (Fe), Manganese (Mn), Copper (Cu), Lead (Pb), and Nickel (Ni) were investigated in the groundwater from 65 locations of Ranchi city by the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The spatial distribution of WQI was established by Inverse Distance Weighted (IDW) interpolation technique using ArcGIS 10.3. The mystery of hydrogeochemical evolution in groundwater was elucidated by plotting the Piper trilinear diagram of major cations (Ca2+, Na+, Mg2+, K+) and anions (HCO3-, Cl-, SO42-, F-). Significant fluctuations in the water level during PRM (7.38mbgl to 10.5 mbgl) and POM (4.3- 6.4 mbgl) season were observed in the central part of the study area. Performance evaluation of WQI models indicated that the CCMEWQI performed better than GWQI for assessing the quality index of groundwater with a comparatively higher coefficient value (R2 0.97) and less NMSE (4.34) RMSE (27.38), MAPE (0.357). The health risk of heavy metals via the oral route was investigated by calculating hazard quotient (HQ) and hazard index (HI). The HI value was observed maximum for As followed by Mn >Pb > Ni >Fe >Cu for adults and children. The spatial distribution map of HI indicated that most of the studies area are at a non-carcinogenic risk of heavy metals. The study provides immense help for water authorities and public health decision-makers to prevent the community's health risk.


2009 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
D. S. Malik ◽  
Pawan Kumar ◽  
Umesh Bharti

The present study aims to identify the ground water contamination problem in villages located in the close vicinity of Gajraula industrial area at Gajraula (U.P.), India. Ground water samples were collected from different villages at the depth of 40 and 120 feet from earth’s surface layer. Analytical techniques as described in the standard methods for examination of water and waste water were adopted for physico-chemical analysis of ground water samples and the results compared with the standards given by WHO and BIS guidelines for drinking water. Water quality index was calculated for quality standard of ground water for drinking purposes. The present investigation revealed that the water quality is moderately degraded due to high range of seven water quality parameters such as Temperature (18.33-32.36 0C), conductivity (925.45-1399.59 μmho/cm), TDS (610.80-923.73 mgL-1), Alkalinity (260.17- 339.83 mgL-1), Ca-Hardness (129.68-181.17 mgL-1), Mg-Hardness (94.07-113.50 mgLÉ1) and COD (13.99-25.62 mgL-1). The water quality index (WQI) also indicated the all the water quality rating comes under the standard marginal values (45-64) i.e. water quality is frequently threatened or impaired and conditions usually depart from natural or desirable levels.


2009 ◽  
Vol 6 (2) ◽  
pp. 523-530 ◽  
Author(s):  
C. R. Ramakrishnaiah ◽  
C. Sadashivaiah ◽  
G. Ranganna

The present work is aimed at assessing the water quality index (WQI) for the groundwater of Tumkur taluk. This has been determined by collecting groundwater samples and subjecting the samples to a comprehensive physicochemical analysis. For calculating the WQI, the following 12 parameters have been considered: pH, total hardness, calcium, magnesium, bicarbonate, chloride, nitrate, sulphate, total dissolved solids, iron, manganese and fluorides. The WQI for these samples ranges from 89.21 to 660.56. The high value of WQI has been found to be mainly from the higher values of iron, nitrate, total dissolved solids, hardness, fluorides, bicarbonate and manganese in the groundwater. The results of analyses have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 262 ◽  
Author(s):  
Moustafa El Baba ◽  
Prabin Kayastha ◽  
Marijke Huysmans ◽  
Florimond De Smedt

Groundwater contamination is a major problem in the Gaza Strip. In this study we investigate the groundwater quality in the Dier al-Balah Governorate. Water samples were collected from 19 municipal wells in April 2009 and April 2014 and analyzed for physio-chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, K+, Cl−, SO42–, HCO3− and NO3−). The aim of the research is to determine the groundwater quality and to produce groundwater quality maps using the water quality index (WQI) method and geostatistical analysis. The results show that all water samples are very saline due to the intrusion of Mediterranean seawater in the coastal aquifer. Differences in chemical composition between 2009 and 2014 indicate that about 1% more seawater was mixed with the groundwater in this period. The majority of the observed chemical parameters of all wells are well above the WHO water quality standards and all WQI values indicate that the water quality is problematic. The spatial variation of the WQI scores is modelled by a deterministic component expressing a linear dependence on the distance to the coastline and a stochastic residual described by an exponential variogram with a practical range of 3000 m. The mapping of the WQI scores and derived water quality classes is achieved through regression-kriging. The results indicate that the groundwater in a large area along the coastline is unsuitable for human consumption and comparison of the maps of 2009 and 2014 shows that this region further expanded by about 700 m inland in a period of 5 years. The results of this study are worrying, but they also contribute to a better understanding of the factors that determine the groundwater quality and can help authorities and stakeholders with sustainable development.


2016 ◽  
Vol 11 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Gopal Krishan ◽  
C. P. Kumar ◽  
B.K. Purandara ◽  
Surjeet Singh ◽  
N. C Ghosh ◽  
...  

A water quality index (WQI) is a tool which numerically summarizes the information from multiple water quality parameters into a single value and this information can be used to assess spatial and temporal variations in overall water quality. However, these indices are time and region specific and may be influenced by local factors. In the present study, water quality index has been worked out to assess the spatial and temporal variation of groundwater quality status for future planning and management of North Goa. Data of 19 groundwater samples were collected in the year 2005 during January, March and April, are used for the analysis. The Water Quality Index has been computed using four parameters viz. pH, Total Dissolved Solids, Total Hardness and Chloride. The WQI results show that the overall water quality class is ‘good’ and water is acceptable for domestic use.


2021 ◽  
Vol 56 (2) ◽  
pp. 83-93
Author(s):  
Huynh The An ◽  
Tran Thi Ngoc Bich ◽  
Chen Yi-Ching ◽  
Tran Thi Thu Hien

The quality of groundwater resources is increasingly declining, significantly affecting people’s life and health. The study aims to assess public perception on existing groundwater quality and scheme over conventionally used free groundwater. The contemporaneous analytical procedures applied to determine the concentration of physical parameters: total dissolved solids and total solids and chemical parameters: pH, nitrite (N-NO2-), nitrate (N- NO3-), ammonium (N-NH4+/ NH3), iron (FeII + III) and total hardness were collected for 30 drinking water well samples located in 5 Quarters (An Hoa, An Loi, Ben Don, Phu Hoa, and Phu Nghi) to calculate the water quality index. The results show that up to 96% of people still use groundwater as their main source of drinking, domestic purposes, although groundwater quality is showing a serious decline in quality. The low pH index ranges from 3.0 ÷ 4.5. On average, 3.5 ÷ 4.0 pH of groundwater samples are outside the permissible limit according to VN standards 09: 2015 (5.5 - 8.5), which makes the water acidic, which harmful to human health. Besides, 10% of groundwater samples had high nitrate content, and 6.67% of water samples had ammonium content that did not meet VN standards 09: 2015. The current state of groundwater quality is not good for cooking and drinking. The results will benefit future groundwater exploitation to support more evidence of water quality and deteriorate the water quality soon, ultimately proving to be disastrous for all living beings in the region.


Sign in / Sign up

Export Citation Format

Share Document