scholarly journals A Survey on Novel Estimation Approach of Motion Controllers for Self-Driving Cars

2021 ◽  
Vol 2 (4) ◽  
pp. 211-219
Author(s):  
Vinothkanna R

The motion planning framework is one of the challenging tasks in autonomous driving cars. During motion planning, predicting of trajectory is computed by Gaussian propagation. Recently, the localization uncertainty control will be estimating by Gaussian framework. This estimation suffers from real time constraint distribution for (Global Positioning System) GPS error. In this research article compared novel motion planning methods and concluding the suitable estimating algorithm depends on the two different real time traffic conditions. One is the realistic unusual traffic and complex target is another one. The real time platform is used to measure the several estimation methods for motion planning. Our research article is that comparing novel estimation methods in two different real time environments and an identifying better estimation method for that. Our suggesting idea is that the autonomous vehicle uncertainty control is estimating by modified version of action based coarse trajectory planning. Our suggesting framework permits the planner to avoid complex and unusual traffic (uncertainty condition) efficiently. Our proposed case studies offer to choose effectiveness framework for complex mode of surrounding environment.

2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Rusmadi Suyuti

Traffic information condition is a very useful  information for road user because road user can choose his best route for each trip from his origin to his destination. The final goal for this research is to develop real time traffic information system for road user using real time traffic volume. Main input for developing real time traffic information system is an origin-destination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or road side interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the alternative of using traffic counts to estimate O-D matrices is particularly attractive. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of the approach is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods. The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Two types of demand models have been used: gravity (GR) and gravity-opportunity (GO) models. Four estimation methods have been analysed and tested to calibrate the transport demand models from traffic counts, namely: Non-Linear-Least-Squares (NLLS), Maximum-Likelihood (ML), Maximum-Entropy (ME) and Bayes-Inference (BI). The Bandung’s Urban Traffic Movement survey has been used to test the developed method. Based on several statistical tests, the estimation methods are found to perform satisfactorily since each calibrated model reproduced the observed matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and equilibrium assignment.  


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 657
Author(s):  
Aoki Takanose ◽  
Yoshiki Atsumi ◽  
Kanamu Takikawa ◽  
Junichi Meguro

Autonomous driving support systems and self-driving cars require the determination of reliable vehicle positions with high accuracy. The real time kinematic (RTK) algorithm with global navigation satellite system (GNSS) is generally employed to obtain highly accurate position information. Because RTK can estimate the fix solution, which is a centimeter-level positioning solution, it is also used as an indicator of the position reliability. However, in urban areas, the degradation of the GNSS signal environment poses a challenge. Multipath noise caused by surrounding tall buildings degrades the positioning accuracy. This leads to large errors in the fix solution, which is used as a measure of reliability. We propose a novel position reliability estimation method by considering two factors; one is that GNSS errors are more likely to occur in the height than in the plane direction; the other is that the height variation of the actual vehicle travel path is small compared to the amount of movement in the horizontal directions. Based on these considerations, we proposed a method to detect a reliable fix solution by estimating the height variation during driving. To verify the effectiveness of the proposed method, an evaluation test was conducted in an urban area of Tokyo. According to the evaluation test, a reliability judgment rate of 99% was achieved in an urban environment, and a plane accuracy of less than 0.3 m in RMS was achieved. The results indicate that the accuracy of the proposed method is higher than that of the conventional fix solution, demonstratingits effectiveness.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 15
Author(s):  
Filippo Aleotti ◽  
Giulio Zaccaroni ◽  
Luca Bartolomei ◽  
Matteo Poggi ◽  
Fabio Tosi ◽  
...  

Depth perception is paramount for tackling real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image would represent the most versatile solution since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit the practical deployment of monocular depth estimation methods on such devices: (i) the low reliability when deployed in the wild and (ii) the resources needed to achieve real-time performance, often not compatible with low-power embedded systems. Therefore, in this paper, we deeply investigate all these issues, showing how they are both addressable by adopting appropriate network design and training strategies. Moreover, we also outline how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time, depth-aware augmented reality and image blurring with smartphones in the wild.


2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


Author(s):  
Hrishikesh Dey ◽  
Rithika Ranadive ◽  
Abhishek Chaudhari

Path planning algorithm integrated with a velocity profile generation-based navigation system is one of the most important aspects of an autonomous driving system. In this paper, a real-time path planning solution to obtain a feasible and collision-free trajectory is proposed for navigating an autonomous car on a virtual highway. This is achieved by designing the navigation algorithm to incorporate a path planner for finding the optimal path, and a velocity planning algorithm for ensuring a safe and comfortable motion along the obtained path. The navigation algorithm was validated on the Unity 3D Highway-Simulated Environment for practical driving while maintaining velocity and acceleration constraints. The autonomous vehicle drives at the maximum specified velocity until interrupted by vehicular traffic, whereas then, the path planner, based on the various constraints provided by the simulator using µWebSockets, decides to either decelerate the vehicle or shift to a more secure lane. Subsequently, a splinebased trajectory generation for this path results in continuous and smooth trajectories. The velocity planner employs an analytical method based on trapezoidal velocity profile to generate velocities for the vehicle traveling along the precomputed path. To provide smooth control, an s-like trapezoidal profile is considered that uses a cubic spline for generating velocities for the ramp-up and ramp-down portions of the curve. The acceleration and velocity constraints, which are derived from road limitations and physical systems, are explicitly considered. Depending upon these constraints and higher module requirements (e.g., maintaining velocity, and stopping), an appropriate segment of the velocity profile is deployed. The motion profiles for all the use-cases are generated and verified graphically.


Author(s):  
Yeun Sub Byun ◽  
Young Chol Kim

This paper presents a new real-time heading estimation method for an all-wheel steered single-articulated autonomous vehicle guided by a magnetic marker system. To achieve good guidance control for the vehicle, precise estimation of the position and heading angle during travel is necessary. The main concept of this study is to estimate the heading angle from the relative orientations of the magnetic markers and the vehicle motion. To achieve this, a kinematic model of the all-wheel steered vehicle is derived and combined with the motion of a magnetic ruler mounted near each axle underneath the vehicle. The position coordinates and polarities of the magnetic markers, which are provided a priori, are used to determine the vehicle position at every detection instance. A gyroscope is employed to assist real-time heading estimation at sample times when there are no marker detection data. The proposed method was tested on a real vehicle and evaluated by comparing the experimental results with those of the differential global positioning system (DGPS) in real-time kinematics (RTK) mode. Experimental results show that the proposed method exhibits good performance for heading estimation.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5547
Author(s):  
Younes Al Younes ◽  
Martin Barczyk

Navigating robotic systems autonomously through unknown, dynamic and GPS-denied environments is a challenging task. One requirement of this is a path planner which provides safe trajectories in real-world conditions such as nonlinear vehicle dynamics, real-time computation requirements, complex 3D environments, and moving obstacles. This paper presents a methodological motion planning approach which integrates a novel local path planning approach with a graph-based planner to enable an autonomous vehicle (here a drone) to navigate through GPS-denied subterranean environments. The local path planning approach is based on a recently proposed method by the authors called Nonlinear Model Predictive Horizon (NMPH). The NMPH formulation employs a copy of the plant dynamics model (here a nonlinear system model of the drone) plus a feedback linearization control law to generate feasible, optimal, smooth and collision-free paths while respecting the dynamics of the vehicle, supporting dynamic obstacles and operating in real time. This design is augmented with computationally efficient algorithms for global path planning and dynamic obstacle mapping and avoidance. The overall design is tested in several simulations and a preliminary real flight test in unexplored GPS-denied environments to demonstrate its capabilities and evaluate its performance.


Author(s):  
Hye-Won Lee ◽  
Kwang-Seok Oh ◽  
Young-Min Yoon ◽  
Kyong-Su Yi

Abstract This paper describes derivation algorithm and evaluation results of a Poincare-Bendixson theorem based target acceleration computation algorithm for autonomous driving on inverse time to collision and time headway plane. Derivation of target acceleration is needed for longitudinal autonomous driving. Ellipsoidal driving area is derived for considering driver’s driving characteristic and safety in time headway-inverse time to collision (TTC) plane. And target acceleration computation algorithm has been proposed based on Poincare-Bendixson theorem. Ellipsoidal driving areas are divided main driving area and real-time driving area. Main driving area is derived based on limit of inverse TTC and time headway for takeover time and human factor, real-time driving area is derived through current driving point with ratio of main driving area. It is designed to computation the target acceleration after deriving the target direction by applying a specific angle based on the normal to the current driving point through the real-time driving area. Specific angle is arbitrary value applied acceleration limitation of actual vehicle. The performance evaluation of target acceleration computation algorithm is has been conducted in Matlab/Simulink environment. It is expected that the proposed algorithm can be used for longitudinal control algorithm for safety and personalization of autonomous vehicle.


2020 ◽  
Vol 11 (4) ◽  
pp. 66
Author(s):  
Nassim Noura ◽  
Loïc Boulon ◽  
Samir Jemeï

To cope with the new transportation challenges and to ensure the safety and durability of electric vehicles and hybrid electric vehicles, high performance and reliable battery health management systems are required. The Battery State of Health (SOH) provides critical information about its performances, its lifetime and allows a better energy management in hybrid systems. Several research studies have provided different methods that estimate the battery SOH. Yet, not all these methods meet the requirement of automotive real-time applications. The real time estimation of battery SOH is important regarding battery fault diagnosis. Moreover, being able to estimate the SOH in real time ensure an accurate State of Charge and State of Power estimation for the battery, which are critical states in hybrid applications. This study provides a review of the main battery SOH estimation methods, enlightening their main advantages and pointing out their limitations in terms of real time automotive compatibility and especially hybrid electric applications. Experimental validation of an online and on-board suited SOH estimation method using model-based adaptive filtering is conducted to demonstrate its real-time feasibility and accuracy.


Sign in / Sign up

Export Citation Format

Share Document