Effect Of Co-Culture With Nurse Plant (Lavandula Dentata L.) On The Morphological And Physiological Parameters In Cupressus Atlantica G. Grown Under Long Term Of Water Stress Conditions

2019 ◽  
pp. 155
Author(s):  
Lamia Zarik ◽  
Mohamed Hafidi ◽  
Mohammed El Aklaa ◽  
Ali Boumezzough
2015 ◽  
Vol 50 (7) ◽  
pp. 534-540 ◽  
Author(s):  
Cleber Morais Guimarães ◽  
Luís Fernando Stone ◽  
Adriano Pereira de Castro ◽  
Odilon Peixoto de Morais Júnior

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.


Author(s):  
S. N. Saxena ◽  
R. K. Kakani ◽  
L. K. Sharma ◽  
D. Agarwal ◽  
S. John ◽  
...  

An experiment was conducted to investigate the effect of moisture stress on morpho-physiological parameters, seed yield and total oil content of thirteen fenugreek genotypes grown under moisture stress at different growth stages. Fenugreek genotypes showed significant differences in plant fresh weight, shoot and root weight, shoot and root length, number of branches, number of pods and seed yield per plant. Chlorophyll content and water potential was found to be reduced under water stress. Genotypes showed variation in canopy temperature under non stress conditions which was narrowed under stress conditions. Water stress at flowering and post flowering stage increased the oil content from a minimum of 3.29% in AFg 6 to a maximum of 5.31 in AM 327-3.


2006 ◽  
Vol 36 (4) ◽  
pp. 1028-1034 ◽  
Author(s):  
Corina Graciano ◽  
Juan J Guiamet ◽  
Juan F Goya

We determined whether fertilization with N and P affects water relations, and thereby water-stress tolerance, in young Eucalyptus grandis plants. To assess whether fertilization enhances osmotic adjustment under drought, 3-month-old E. grandis were planted in pots and fertilized with either N (1 g of urea) or P (12 g of calcium super phos phate). The soil was watered to attain one of two conditions: field capacity and –0.8 MPa. P fertilization when plants were well watered conditions increased solute accumulation, which might confer better performance under water stress. However, under water-stress conditions, nonfertilized and N-fertilized plants showed osmotic adjustment, while P-fertilized plants did not. P fertilization increased dry-mass allocation to leaves and decreased allocation to roots even under water-stress conditions. N-fertilized plants increased allocation to roots and maintained allocation to leaves under water-stress conditions in comparison with control plants, so they were not affected by water stress as much as P-fertilized plants were. This may explain why P fertilization increased growth when water was not limiting but had no effect under drought conditions. In the long term, changes in dry-mass allocation caused by P fertilization might increase susceptibility to water deficit.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
N. Borah ◽  
P.K. Borua ◽  
S. Roy ◽  
S.P. Saikia

The global climate change is occurring at an unpredictable rate, where periods of drought are predicted to be extremely severe. The drought tolerance in Teak (Tectona grandis Linn. f.) accessions; collected from North East India was screened under water stress conditions created by reducing irrigation doses. Parameters targeted for screening were vegetative growth, physiological parameters and chemical constituents of leaves. Water stress treatment revealed that plant height, leaves number/plant, average leaf area, N, P, K, Ca, Cl and Na content were significantly decreased by increasing the level of water stress conditions in all studied accessions. Variations in the physiological parameters among different accessions may be due to different intensities of natural selection acting upon the traits in their natural habitat. The aim of the study was to determine source variation in Tectona grandis Linn. f. accessions collected from 41 locations of North East India and to identify the best sources to be utilised for reforestation and further genetic improvement work. In our study, three promising drought tolerant accessions were screened in a decreasing order of drought tolerance viz. GKU-24, GKU-37 and BNU-10 whereas; the drought stress had the most adverse effect on ASM-124 and LUT-45.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
pp. 1-22
Author(s):  
Amanullah ◽  
Mohammad Yar ◽  
Shah Khalid ◽  
Mohamed Soliman Elshikh ◽  
Hafiz M. Akram ◽  
...  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


Plant Science ◽  
2015 ◽  
Vol 238 ◽  
pp. 26-32 ◽  
Author(s):  
D.A. Ramírez ◽  
J.L. Rolando ◽  
W. Yactayo ◽  
P. Monneveux ◽  
V. Mares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document