Metallurgical methods of improving the machinability of structural steels to increase the productivity of processing in the conditions of automated production

2021 ◽  
pp. 51-54
Author(s):  

The influence of non-metallic inclusions on the main indicators of steel machinability is investigated. The influence of non-metallic inclusions on the cutting force is determined. Generalized formulas for calculating tool life, cutting speed and cutting force components are proposed. Keywords: machinability, productivity, structural steel, non-metallic inclusions. [email protected]

1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2070 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Mariusz Kłonica ◽  
Jakub Matuszak

This paper set out to investigate the effect of cutting speed vc and trochoidal step str modification on selected machinability parameters (the cutting force components and vibration). In addition, for a more detailed analysis, selected surface roughness parameters were investigated. The research was carried out for two grades of magnesium alloys—AZ91D and AZ31—and aimed to determine stable machining parameters and to investigate the dynamics of the milling process, i.e., the resulting change in the cutting force components and in vibration. The tests were performed for the specified range of cutting parameters: vc = 400–1200 m/min and str = 5–30%. The results demonstrate a significant effect of cutting data modification on the parameter under scrutiny—the increase in vc resulted in the reduction of the cutting force components and the displacement and level of vibration recorded in tests. Selected cutting parameters were modelled by means of Statistica Artificial Neural Networks (Radial Basis Function and Multilayered Perceptron), which, furthermore, confirmed the suitability of neural networks as a tool for prediction of the cutting force and vibration in milling of magnesium alloys.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


2020 ◽  
Vol 18 (4) ◽  
pp. 643-648
Author(s):  
Asset Rakishev ◽  
Almat Sagitov ◽  
Bakytzhan Donenbaev ◽  
Karibek Sherov ◽  
Sayagul Tussupova ◽  
...  

The authors developed the design of a special multi-blade rotary-friction tool. The multi-blade rotary-friction tool is equipped with two cupped cutters - heating and cutting. The heating cupped cutter is made of medium-carbon structural steel of any brand, and the cutting cupped cutter is made of steel R6M5. The final formation of the treated surface and its quality is provided by the cutting cupped cutter. This article presents the results of the calculation of the strength of the cutting cupped cutter multi-blade rotary friction tool.As a result, the following were established: when processing steels 30HGSA cutting force components reach the maximum value than when processing materials 40HN2MA, St.45, and St.3c (calm); strength and rigidity of the cutting cupped cutter is sufficient for processing optimal cutting conditions: nsp = 1000 rpm; S = 0.42 mm/rot; t = 1.0 mm.


2020 ◽  
Vol 14 (1) ◽  
pp. 6497-6503
Author(s):  
Nor Aznan Mohd Nor ◽  
B. T. H. T. Baharudin ◽  
J. A. Ghani ◽  
Z. Leman ◽  
M. K. A. Ariffin

Research on cutting force revealed that the cutting force decreases as cutting speed increases, which is in line with Salomon’s Theory. However, the fundamental behaviour was never clearly explained because most studies had focused on increasing the cutting speed by increasing spindle speed without retaining the rate of chip load. On that note, the effect of increasing spindle speed while chip load is constant on the cutting force of Hastelloy X is presented in this paper. Third Wave AdvantEdge software was applied and half-immersion up-milling simulations were conducted in dry condition. Result showed that the resultant force was primarily affected by the axial force, followed by normal force and feed force. Trend-lines indicated that the behaviour of cutting force components and resultant force was quadratic. Desirability Function Analysis (DFA) results revealed that the optimum combination of chip load and spindle speed led to lowest cutting force components and resultant force was at 0.013 mm/tooth and 24,100 RPM. Furthermore, the optimum cutting conditions that led to the lowest cutting force components and resultant force at chip loads of 0.016 mm/tooth and 0.019 mm/tooth was 24,100 RPM also. Therefore, increasing Material Removal Rate (MRR) while minimizing cutting force components and resultant force can be achieved by increasing the amount of chip load at spindle speed of 24,100 RPM.


2014 ◽  
Vol 797 ◽  
pp. 47-52
Author(s):  
Jorge Salguero ◽  
Madalina Calamaz ◽  
Moisés Batista ◽  
Franck Girot ◽  
Mariano Marcos Bárcena

Cutting forces are one of the inherent phenomena and a very significant indicator of the metal cutting process. The work presented in this paper is an investigation of the prediction of these parameters in slotting processes of UNS A92024-T3 (Al-Cu) stacks. So, cutting speed (V) and feed per tooth (fz) based parametric models, for experimental components of cutting force, F(fz,V) have been proposed. These models have been developed from the individual models extracted from the marginal adjustment of the cutting force components to each one of the input variables: F(fz) and F(V).


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1 to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


2018 ◽  
Author(s):  
Xingbang Chen ◽  
Ashutosh Khatri ◽  
J. Ma ◽  
Muhammad P. Jahan

In this paper, numerical investigation of the effects of cutting conditions in slot up milling of Ti-6Al-4V is conducted using Finite Element Method (FEM). Experiments are conducted to validate the FEM models. The validated models are then used to predict the cutting force components when different cutting conditions are applied. It is found that cutting speed, feed rate, and depth of cut have strong influence on cutting force components and tool temperature. This research provides insightful guidance for selecting optimal cutting conditions for slot milling of Ti-6Al-4V.


2015 ◽  
Vol 669 ◽  
pp. 63-70
Author(s):  
Julia Hricova

To evaluate and optimize the cutting process from the effective, qualitative and economic point of view, the detailed knowledge about size, direction and orientation of cutting forces is necessary. Cutting forces are an important indicator of machining performance. It helps to understand every single action which occurs during the machining process. In this study, the influence of selected cutting parameters (cutting speed and feed rate) on the behavior of cutting force components were experimentally investigated. AlMgSi1 aluminum alloy (EN AW 6082) was milled in dry and wet machining conditions utilizing uncoated sintered carbide end mills with a different helix angle. Cutting force components were measured and statistically analyzed with using of ANOVA.


Sign in / Sign up

Export Citation Format

Share Document