Numerical Investigation of the Slot Up Milling of Ti-6Al-4V

2018 ◽  
Author(s):  
Xingbang Chen ◽  
Ashutosh Khatri ◽  
J. Ma ◽  
Muhammad P. Jahan

In this paper, numerical investigation of the effects of cutting conditions in slot up milling of Ti-6Al-4V is conducted using Finite Element Method (FEM). Experiments are conducted to validate the FEM models. The validated models are then used to predict the cutting force components when different cutting conditions are applied. It is found that cutting speed, feed rate, and depth of cut have strong influence on cutting force components and tool temperature. This research provides insightful guidance for selecting optimal cutting conditions for slot milling of Ti-6Al-4V.

1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2070 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Mariusz Kłonica ◽  
Jakub Matuszak

This paper set out to investigate the effect of cutting speed vc and trochoidal step str modification on selected machinability parameters (the cutting force components and vibration). In addition, for a more detailed analysis, selected surface roughness parameters were investigated. The research was carried out for two grades of magnesium alloys—AZ91D and AZ31—and aimed to determine stable machining parameters and to investigate the dynamics of the milling process, i.e., the resulting change in the cutting force components and in vibration. The tests were performed for the specified range of cutting parameters: vc = 400–1200 m/min and str = 5–30%. The results demonstrate a significant effect of cutting data modification on the parameter under scrutiny—the increase in vc resulted in the reduction of the cutting force components and the displacement and level of vibration recorded in tests. Selected cutting parameters were modelled by means of Statistica Artificial Neural Networks (Radial Basis Function and Multilayered Perceptron), which, furthermore, confirmed the suitability of neural networks as a tool for prediction of the cutting force and vibration in milling of magnesium alloys.


2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).


2021 ◽  
pp. 51-54
Author(s):  

The influence of non-metallic inclusions on the main indicators of steel machinability is investigated. The influence of non-metallic inclusions on the cutting force is determined. Generalized formulas for calculating tool life, cutting speed and cutting force components are proposed. Keywords: machinability, productivity, structural steel, non-metallic inclusions. [email protected]


2011 ◽  
Vol 110-116 ◽  
pp. 3563-3569 ◽  
Author(s):  
Bandit Suksawat

This paper aims to investigate cutting conditions influence on main cutting force and surface roughness based on considered chip form types in cast nylon turning operation with single-point high speed steel cutting tool. The 75 experiments were performed by average of three levels of cutting speed, five levels of cutting depth and five levels of feed rate. The results reveal that main cutting forces were increased by an increasing of cutting speed and cutting depth for all obtained chip form types for all chip form types. The surface roughness is affected by increasing of feed rate and reduction of cutting speed for 2.3 Snarled and 4.3 Snarled chip form types. The statistical path-coefficient analysis results are shown that the main cutting force affected by cutting speed, depth of cut and feed rate with total causal effect value of 0.5537, 0.4785 and 0.1718, respectively. The surface roughness is influenced by feed rate, cutting speed and depth of cut with 0.8400, -0.2419 and-0.0711 of total causal effect value, respectively. These results are useful to perform varying cutting conditions for high quality of workpiece in cast nylon turning by control the chip form type.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


Author(s):  
Firat Kafkas

The objective of this study is to obtain the cutting force components on the threading insert. The cutting force data used in the analysis are measured by a three-dimensional dynamic force dynamometer. The AISI 4140 and AISI 4340 low alloy steels are selected for the experiment on the threading and the side cut turning. The inserts used for testing is the TiAlN coated and uncoated grades. LT22NR35ISO type insert is used in the experiment. During the experiments, no cutting fluid and a constant spindle speed is used. The thread pitch and the depth of cut were kept fixed at 3.5 mm and 0.05 mm for the radial feed per pass, respectively. The study emphasizes on the effects on the workpiece material and the cutting tool grade of the cutting force components that occur during the threading. Also, these results are compared with the findings that are obtained during the side cut turning. It is determined that the measured primary cutting and radial forces during the threading are approximately three times bigger than those during the side cut turning, although feed forces during the threading are approximately 30 times lower compared with the side cut turning. The TiAlN coated WC/Co grade shows the best performance with respect to the cutting force components. The specific cutting forces are determined in order to understand the interference of chips that occur during the threading. With the increase in the cumulative radial feed, the corresponding specific cutting forces become higher. It is reasoned that the difference in the specific cutting forces results from the alteration of the interference of the flowing chips. The specific cutting forces decrease in the beginning of the threading and then increases with the cumulative radial feed. The results show that the interference of the chip flow influences the threading force components to a very large extent.


2020 ◽  
Vol 18 (4) ◽  
pp. 643-648
Author(s):  
Asset Rakishev ◽  
Almat Sagitov ◽  
Bakytzhan Donenbaev ◽  
Karibek Sherov ◽  
Sayagul Tussupova ◽  
...  

The authors developed the design of a special multi-blade rotary-friction tool. The multi-blade rotary-friction tool is equipped with two cupped cutters - heating and cutting. The heating cupped cutter is made of medium-carbon structural steel of any brand, and the cutting cupped cutter is made of steel R6M5. The final formation of the treated surface and its quality is provided by the cutting cupped cutter. This article presents the results of the calculation of the strength of the cutting cupped cutter multi-blade rotary friction tool.As a result, the following were established: when processing steels 30HGSA cutting force components reach the maximum value than when processing materials 40HN2MA, St.45, and St.3c (calm); strength and rigidity of the cutting cupped cutter is sufficient for processing optimal cutting conditions: nsp = 1000 rpm; S = 0.42 mm/rot; t = 1.0 mm.


2020 ◽  
Vol 14 (1) ◽  
pp. 6497-6503
Author(s):  
Nor Aznan Mohd Nor ◽  
B. T. H. T. Baharudin ◽  
J. A. Ghani ◽  
Z. Leman ◽  
M. K. A. Ariffin

Research on cutting force revealed that the cutting force decreases as cutting speed increases, which is in line with Salomon’s Theory. However, the fundamental behaviour was never clearly explained because most studies had focused on increasing the cutting speed by increasing spindle speed without retaining the rate of chip load. On that note, the effect of increasing spindle speed while chip load is constant on the cutting force of Hastelloy X is presented in this paper. Third Wave AdvantEdge software was applied and half-immersion up-milling simulations were conducted in dry condition. Result showed that the resultant force was primarily affected by the axial force, followed by normal force and feed force. Trend-lines indicated that the behaviour of cutting force components and resultant force was quadratic. Desirability Function Analysis (DFA) results revealed that the optimum combination of chip load and spindle speed led to lowest cutting force components and resultant force was at 0.013 mm/tooth and 24,100 RPM. Furthermore, the optimum cutting conditions that led to the lowest cutting force components and resultant force at chip loads of 0.016 mm/tooth and 0.019 mm/tooth was 24,100 RPM also. Therefore, increasing Material Removal Rate (MRR) while minimizing cutting force components and resultant force can be achieved by increasing the amount of chip load at spindle speed of 24,100 RPM.


Sign in / Sign up

Export Citation Format

Share Document