scholarly journals The efficiency of using incinerated organic waste as an alternative aggregate for concrete

Author(s):  
Hossam. A. Elaqra ◽  
◽  
Saddam H. Qarmout ◽  
Jehad T. Hamad ◽  
Eyad A. Hadad ◽  
...  

With the growth of the global population, two major problems have emerged. Firstly, a significant amount of domestic and industrial waste is discarded and placed in landfills. Secondly, there is a necessity for more construction and building materials. This research discusses the use of alternative green resources for construction materials taken from recycled organic waste, which represents more than 60% of the total waste generated by humans. Results showed that, after incineration at 750 °C, the reminder represented less than 15% of the original mass of the waste. The waste was separated into five groups: bottom ash (BA) powder, this part represented 5% of the reminder after incineration (for replacing cement); sand; and fine, medium and coarse aggregates. The powder underwent a pozzolanic reaction and the optimum replacement was 10% for the powder, 30% for the sand, and 10% for the fine, medium, and coarse aggregates. A higher compressive strength was applied to the medium aggregate replacement and a lower one for the fine aggregate. In general, BA can be used as an aggregate replacement as the powder undergoes a pozzolanic reaction and can used as a replacement for cement.

2020 ◽  
Author(s):  
Carlos Galhano ◽  
Pedro Lamas ◽  
Diogo Seixas

The massive growth of the ceramic industry and the consequent demand for construction materials worldwide has motivated the search for alternative solutions aimed at reducing the use of mineral / natural resources as the main source of raw materials. One of the strategies frequently adopted by the scientific community is the reuse of industrial waste. It is beneficial not only to reduce the overexploitation of mineral resources but also to reduce the environmental, economic and social impacts resulting from their incorrect disposal/treatment and consequent deposition on land unsuitable or that purpose. Duetoconsiderationssuchasphysico-mechanical characteristics and the high production rate, two different types of industrial waste were selected for this work, ashes resulting from the burning of coal in thermoelectric power plant, commonly known as bottom ash (B), and the Marble Powder (MP). It was intended to test the technological feasibility of the manufacture of ceramic materials produced from clay mixtures containing these two residues. For this purpose, the fine fraction(<63μm)obtained from the sieving of the marbleresidue(MR)and slag(Bf)was used,aswellasacoarsergrainslagfractionrangingfrom63-125μm(Bg). The resulting test samples were subjected to a firing of 950 °C under an oxidizing atmosphere, following a primary drying process. Faced with the standard values, the new ceramic materials obtained from MP have seen their mechanical and porous characteristics decrease and increase, respectively. Atthesametime,althoughtheadditionofBinno way influenced the mechanical characteristics,a significant improvement the porous characteristic was observed. The incorporation of these residues produced a color very close to the original sample material. Keywords: industrial waste, ceramic, construction materials, bottom ash, Marble Powder


Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 136 ◽  
Author(s):  
Woubishet Zewdu Taffese ◽  
Kassahun Admassu Abegaz

Buildings use a wide range of construction materials, and the manufacturing of each material consumes energy and emits CO2. Several studies have already been conducted to evaluate the embodied energy and the related CO2 emissions of building materials, which are mainly based on case studies from developed countries. There is a considerable gap in cases of developing countries regarding assessment of embodied energy and CO2 emissions of these building materials. This study identified the top five most used construction materials (cement, sand, coarse aggregates, hollow concrete blocks, and reinforcement bars), which are also prime sources of waste generation during construction in the Ethiopian building construction sector. Then, what followed was the evaluation of the embodied energies and CO2 emissions of these materials by examining five commercial and public buildings within the cradle-to-site lifecycle boundary. The evaluation results demonstrated that cement, hollow concrete blocks (HCB), and reinforcement bars (rebars) are the major consumers of energy and major CO2 emitters. Cumulatively, they were responsible for 94% of the embodied energy and 98% of the CO2 emissions. The waste part of the construction materials has inflated the embodied energy and the subsequent CO2 emissions considerably. The study also recommended several strategies for the reduction of embodied energy and the related CO2 emissions. The research delivers critical insights into embodied energy and CO2 emissions of the five most used building materials in the Ethiopian construction industry, as there are no prior studies on this theme. This might be a cause to arouse awareness and interest among the policy makers and the wider public to clearly understand the importance of research on this crucial issue to develop national energy and CO2 descriptors for construction materials, in order to take care of our naturally endowed, but yet fragile, human habitat.


Abstract. To overcome the shortage of natural resources for the production of concrete, many waste materials are used to replace the raw materials of concrete. In this way, bottom ash is one of the major industrial wastes which shall be used as the replacement of materials in concrete production. It shall be used to replace the materials either up to one-third. This review brings out the evaluation of the industrial waste material which can be repeatedly used as a substitution for concrete as fine aggregate. This paper reviewed the use of industrial waste i.e., bottom ash as fine aggregate in the concrete. The parameters discussed were physical, chemical, fresh, and hardened properties of the concrete with partial replacement of bottom ash. By reviewing some of the research papers, concluded that 10-15% replacement of fine aggregates is acceptable for all the properties of concrete. High utilization of natural sources -gives the pathway to produce more industrial wastes which are responsible for the development of new sustainable development.


Author(s):  
V. V. Tytok

Trends in housing development should be based on the geographical location and climatic conditions of the region, national characteristics and culture, natural resources, transport links, density and living standards. Construction significantly affects the socio-economic development of the region. In this regard, increasing the sustainability of the regional construction complex, which is based on the building materials industry and the construction industry is a relevant and promising area of research.Demand in the building materials market continues to stimulate increased interest in the development of new types of efficient and inexpensive building materials. Since construction is one of the most material-intensive sectors of the economy, which consumes a large number of construction materials and products, various measures are taken to reduce their cost.In this regard, recently in the construction seek to make greater use of local building materials. This allows you to unload transport from long-distance transportation and significantly reduces the cost of construction. However, the building materials industry cannot develop by focusing only on natural sources of raw materials, as the costs of their extraction and processing are constantly growing. The use of man-made waste provides production with a rich source of cheap and often already prepared raw materials, which reduces the cost of manufacturing building materials.One of the promising areas in the construction of affordable housing is the maximum use of building materials and products that can be obtained from local raw materials and industrial waste. As local building materials are offered: clay, sand, soil, straw, reeds, flax. The use of industrial waste solves both environmental, fuel and energy problems and expands the raw material base of building materials.


2019 ◽  
Vol 1 (6) ◽  
pp. 346-352
Author(s):  
Easwaran P ◽  
Kalaivani M ◽  
Ramesh S ◽  
Ranjith R

The management of solid industrial waste is of big global concern nowadays. The majority of industries are not interested in the treatment and safe disposal of industrial waste due to its high cost involvements, causing environmental and other ecological impacts. The disposal of waste foundry sand is of prime importance due to the big volume produced from the metal casting industries all over the world as well as the waste bottom ash produced from the thermal power plant. The possibility of substituting natural fine aggregate with industrial by-products such as bottom ash and foundry sand offers technical, economic and environmental advantages which are of greater importance in the present context of sustainability in construction sector. Concrete is the most important engineering material and the addition of some other material may change the properties of concrete. Studies have been carried out to investigate the possibility of utilizing the board range of material as partial replacement material for cement and aggregate in the production of concrete. Natural fine aggregate are becoming scarcity because of its huge utility in various constitution process the possibility of substituting natural fine aggregate with industrial by product such as waste foundry sand and bottom ash in concrete. This study investigate the effect of waste of bottom ash and foundry sand is equal quantities as partial replacement of fine aggregate in 0%, 20%, 30%, 40% on concrete properties such as compression strength and split tensile strength. This study also aims to encourage industries to start commercial production of concrete products using waste bottom ash and foundry sand.


2019 ◽  
Vol 802 ◽  
pp. 113-124
Author(s):  
Ruslan Aharonovich Abramov ◽  
Maksim Sergeevich Sokolov ◽  
Svetlana Vyacheslavovna Derevianko

Material consumption of production of building materials is determined by the amount of raw materials used for their production, to the total output. One of the ways to reduce material consumption is the use of industrial waste as the main raw material for the production of new construction products. Most of the waste generated as a result of the activities of enterprises are man-made raw materials for the production of products such as brick, lime, cement, etc.Given that man-made raw materials are similar to the natural composition and physical properties and even has a number of advantages (heat treatment, increased dispersion, etc.), the manufacture of building materials from it is usually profitable and justified [4, 5].


2020 ◽  
Vol 8 (5) ◽  
pp. 2218-2222

Industrial wastes mostly dumped into the soil or water sources which will pollute the environment. As a mitigation measure now a days the industrial wastes are used as a construction materials. In this project, industrial waste material such as Glass bottle, Illuminate sludge were used in varying percentage as fine grained substitution and Metakaolin is used as a binding material substitution. M30 concrete mix is used to test the compressive and split tensile strength of the concrete specimens. Cement is replaced with metakaolin in 4, 8, 12, 16 and 20%. Fine aggregate is replaced by illuminate sludge in 25, 50, 75 and 100% and beer glass bottle waste in 10, 20, 30, 40, and 50%.The Glass material does not pollute the environment but storage of waste glass material results wastage of land. Thereby glass powder can be used as a substitution in construction. Then the Illuminate sludge and Metakaolin are the waste from the Titanium Product. The materials to be used for the experiment are collected and the physical properties tests were done as per codal specifications. The experiment is conducted to determine the strength of concrete specimen by adding different industrial waste in various proportions. For every industrial wastes each ratio, three specimens were prepared to find out the compressive and split tensile strength of concrete at 7, 14 and 28 days and finally it was allowed to curing for obtaining the optimum strength of concrete. The substitution of Glass bottle powder waste up to 30%, Illuminate sludge 20% and Metakaolin 8% will give the optimum compressive strength. bottle powder waste up to 30% Illuminate sludge 20% and Metakaolin 8% will give the optimum compressive strength.


2022 ◽  
Vol 8 (1) ◽  
pp. 181-194
Author(s):  
Fanny Monika ◽  
Hakas Prayuda ◽  
Martyana Dwi Cahyati ◽  
Erwiena Nurmala Augustin ◽  
Hilal Aulia Rahman ◽  
...  

Concrete is considered one of the construction materials that contribute the most significant carbon dioxide in the world. Meanwhile, according to various studies, concrete production will continue to rise through 2050, especially in developing countries. According to several reports, cement manufacture is one of the largest sources of carbon dioxide in the concrete sector. In addition, overexploitation of aggregates due to concrete production also causes unavoidable natural damage. Bottom ash waste was used as a replacement for cement and fine aggregate as sustainable construction materials. It is envisaged that this research would allow industrial waste to be utilized to its full potential, resulting in a concrete that is more environmentally friendly and minimizes carbon dioxide emissions during the manufacturing process. This study is divided into bottom ash as a cement substitute and bottom ash as a fine aggregate substitute. The engineering properties of the concrete were checked during the experiments in this study when it was fresh and hardened states. The slump test is used to determine the workability of fresh concrete. While for the hardened properties tests consist of compressive strength, splitting tensile strength, flexural strength, and mass density. The usage of bottom ash as a cement replacement demonstrates that as the composition of bottom ash increases, the performance of the hardened properties of concrete decreases. While using bottom ash as a fine aggregate replacement reveals that the performance of hardened properties has improved as the proportion of bottom ash utilized has increased. Doi: 10.28991/CEJ-2022-08-01-014 Full Text: PDF


2020 ◽  
Vol 1 (3) ◽  
pp. 26-31
Author(s):  
Adamtey Simon Asinor ◽  
Ofosu Samuel Anim

The usage of concrete spans the length of civilization and in modern day construction environment, concrete remains one of its major materials. As a result of high cost of construction and construction materials especially in Ghana and other developing countries in West Africa, different efforts have been made to find alternative local building materials to substitute wholly or partly some of the constituents of concrete. This paper looks at the potential of oil palm shells (OPS) as coarse aggregate in lightweight concrete by mainly assessing the compressive strength of OPS concrete and also establish the best mix ratio for OPS concrete. The coarse aggregate of the mix ratios 1:2:4 and 1:3:6 were replaced with OPS and their densities and compressive strengths determined on the 7th, 21st and 28th days of the concrete maturity. It was found that OPS can be used to replace coarse aggregate up to 75% in 1:2:4 mix ratio and up to 50% in 1:3:6 mix ratio. It is therefore recommended that the best mix ratios are 1:2:2:2 and 1:3:3:3. Single storey residential buildings, offices and footbridges are some of the recommended structures that OPS concrete could be suitable for. Keywords: Lightweight concrete; oil palm shell aggregates; density; concrete cubes; concrete maturity


2014 ◽  
Vol 1000 ◽  
pp. 294-297
Author(s):  
Kristýna Urbánková ◽  
Ilona Kukletová ◽  
Hana Štegnerová

Economic and environmental dealing with waste requires development of new technologies for their usage. An incorporation of industrial waste material in construction materials and products is one of the options how to reduce raw materials cost and save natural sources of raw materials. In case of wastes utilization as a component of building materials, it is necessary to know their technological and ecological suitability. This study deals with some ecotoxicological and analytical methods for evaluation of ecological availability of composites with defined content of waste. These methods describe impact of the substances on the environment and living organisms.


Sign in / Sign up

Export Citation Format

Share Document