scholarly journals Enhancement of corrosion resistance and mechanical properties of API 5L X60 steel by heat treatments in different environments

Author(s):  
Haider Mahdi Lieth ◽  
◽  
Raheem Al-Sabur ◽  
Raad Jamal Jassim ◽  
Ahmad Alsahlani ◽  
...  

Steel pipelines are commonly used in the petroleum industry where high strength and durability values are required. In oil installations, the problems of corrosion, especially with crude oil, appear clearly and dramatically, in dealing with API 5L series. Improving the corrosion protection and mechanical properties are a genius goal for steel manufacturers, the heat treatment processes are familiar with this field. In this study, experimental investigations were executed to find the heat treatment influence on the corrosion rate, microstructure, and mechanical properties behavior of API 5L X60 pipeline steel in the presence of three different environments: seawater, freshwater, and crude oil. Two austenitizing temperatures 900°C and 800°C were prepared followed by quenching at 600°C, 450°C, and 300°C respectively, where the corrosion rate was estimated by the mean weight loss method. In this study, more than 60% of the corrosion rate in both seawater and freshwater was improved at 900 ºC austenitizing tempered at 300ºC for the selected pipeline specimens while only 22% reduction was achieved in crude oil. Different microstructure phases appeared in the heat-treated specimens such as tempered martensitic at 300°C and fine-grained ferrite with polygonal ferrite at 600°C. The microhardness values decreased with increasing the tempering temperatures while impact toughness values increased with tempering temperature increasing from 300°C until it was reached 450°C and then return to decrease again in 600°C.

2018 ◽  
Vol 284 ◽  
pp. 351-356 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).


2021 ◽  
Vol 410 ◽  
pp. 221-226
Author(s):  
Mikhail V. Maisuradze ◽  
Maxim A. Ryzhkov ◽  
Dmitriy I. Lebedev

The features of microstructure and mechanical properties of the aerospace high strength steel were studied after the implementation of various heat treatment modes: conventional oil quenching and tempering, quenching-partitioning, austempering. The dependence of the mechanical properties on the tempering temperature was determined. The basic patterns of the formation of mechanical properties during the implementation of isothermal heat treatment were considered. The optimal heat treatment conditions for the studied steel were established.


2016 ◽  
Vol 867 ◽  
pp. 8-13
Author(s):  
Xiang Wang ◽  
Xiao Long Li ◽  
Han Jun Yin ◽  
Li Quan Wang ◽  
Hai Xia Gong

In this paper, first, based on the employing environment and properties requirement of offshore platform, the influence of various alloying elements on the performance of steel was analyzed and chemical composition of a new ultra-high-strength alloy steel was designed. Then, the designed alloy steel specimen has been prepared using intermediate frequency induction furnace. Austenization temperature of the steel was determined through thermal dilatometer. The effects of quenching and tempering process on microstructure and mechanical properties of the steel were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), durometer and universal material tensile tester. The research results indicated that the casting microstructure of the designed steel was a duplex structure of martensite and acicular bainite. The austenitizing onset temperature (Ac1) and termination temperature (Ac3) was 700°C and 790°C, respectively. With the increase of the austenitizing temperature, the hardness of the steel first increased until it reached the maximum value at 860°C and then decreased above 860°C. Meanwhile, the hardness of the steel decreased with the increasing of the tempering temperature in the range 150°C-500°C. The optimal heat-treatment processes were concluded as follows: heating up to 860°C, quenching by oil, and then tempering at 170°C. The superior mechanical properties of tensile strength of 1400MPa and elongation of 6.5% as well as the microstructure of tempered martensite were obtained after this heat treatment.


2010 ◽  
Vol 168-170 ◽  
pp. 847-851 ◽  
Author(s):  
Kai Liu ◽  
Jin Jin Zhang ◽  
Kai Ming Wu

A high strength low alloy wear-resistant steel was quenched at 900°C and tempered at varying temperatures. The microstructures were observed utilizing optical and electron microscope. Results show that microstructures consist of predominantly martensite and lots of bainite in the as-quenched specimens. When the specimen was tempered at 250°C, no obvious change in the microstructure was observed. It has an optimized strength and elongation in this condition of heat treatment. With the increase of tempering temperature, the lath or plate of martensite were coalescenced. The strength of the steel is thus greatly reduced and the elongation was accordingly increased.


2014 ◽  
Vol 971-973 ◽  
pp. 240-243
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Zhao Tan

The effect of heat treatment on the microstructure and mechanical properties of High Strength steel plate Q960E for construction machinery was investigated. The result shows the quenching temperature have obvious effects on the mechanical properties, DQ can improve the toughness and the enchance tempering resistance, precipitations become more and bigger with the rise of the tempering temperature.


2014 ◽  
Vol 887-888 ◽  
pp. 207-213
Author(s):  
Teng Shi Liu ◽  
Yi Tao Yang

In this paper, the influence of heat treatment temperature on the microstructure and mechanical properties of cast steel (ZG25MnNi) was investigated. The results showed that normalizing treatment can effectively refine cast microstructure of ZG25MnNi and maximum hardness achieved at 900°C. After normalized at 900°C, the sample tempered at 500°C,530°C,560°C, 590°C, 620°C, 650°C respectively. With the tempering temperature increasing, the samples tensile strength increased gradually and elongation decreased gradually. When tempered at 530-590°C, the sample had a relatively high strength plastic product. The results showed that the best normalizing temperature is 900°C and the optimum tempering temperature is 530-590°C.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Sign in / Sign up

Export Citation Format

Share Document