scholarly journals Short-term forecasting of monthly water consumption in hyper-arid climate using recurrent neural networks

2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Abdullah A. Alsumaiei ◽  

Freshwater supply is a major challenge in regions with limited water resources and extremely arid climatic conditions. The objective of this study is to model the monthly water demand in Kuwait using the nonlinear autoregressive with exogenous input (NARX) neural network approach. The country lacks conventional surface water resources and is characterized by extremely arid climate. In addition, it has one of the fastest growing populations. In this study, linear detrending is performed on the water consumption time series for the period from January 1993 to December 2018 to eliminate the influence of population growth before application to the NARX model. Monthly temperature data are selected as exogenous input to the NARX model, because they are strongly associated with the water consumption data. Correlation analyses are performed to determine the input and feedback delays of the NARX model. The results demonstrate that the recurrent NARX model is efficient and robust for forecasting the short-term water demand, with a Nash-Sutcliffe (NS) coefficient of 0.837 in the validation period. Seasonal model assessment shows that the model performs best during the critical summer season. The NARX-based recurrent model is established as a powerful and promising tool for predicting urban water demand. Thus, it can efficiently aid the development of resilient water supply plans.

2012 ◽  
Vol 212-213 ◽  
pp. 123-129
Author(s):  
Hua Xin Chen ◽  
Xin Yi Xu

Bases on the expansion of Geordie Coefficient, a analysis method for water consumption fairness have been set up, and the Geordie coefficients are calculated to describe the influence of population, GDP, water quantity on water use of China in 2009. Then water demand coefficient is put forward to estimate the reasons for unfairness of water use. Moreover, Geordie coefficient of the North and South of China is analyzed. The results show that Geordie Coefficient represents unfairness of water use, which result from the unfair factors, including population, GDP, and water quantity. The research can provide reference for reasonable configuration of the water resources.


2013 ◽  
Vol 353-356 ◽  
pp. 2943-2947
Author(s):  
Ying Dong ◽  
Xi Jun Wu

This paper analyzed the water resources and its availability distribution regularities in Northern Shaanxi; and the change laws of water consumption and supply in 1980-2010; according to the relevant planning goal and various industry water standard, forecasted the Northern Shaanxi water demand in future. Result shows that 2020 and 2030 water demand respectively is 1.9×109 m3 and 2.6×109 m3 in Northern Shaanxi. So the 1.6×109 m3 of available water resources at this stage can't meet the future requirements.


2021 ◽  
Author(s):  
Rubén A. Villar-Navascués ◽  
Sandra Ricart ◽  
Antonio M. Rico-Amorós ◽  
María Hernández-Hernández

<p>Since the middle of the 20th century, urban-tourist development in tourist destinations on the Mediterranean coast has required the creation of complex water supply systems to guarantee a growing water demand. At present, the challenges posed by climate change around the management of water resources requires the implementation of adequate water policies and sustainable environmental solutions to foster the adaptation to a foreseeable future characterized by lower availability of conventional water resources and more recurrent and intense droughts. In this context, the link between the scientific field, the stakeholders from the tourism sector, and the decision-makers is vital to favor viable, effective, and consensual solutions that shift the focus from the objective of guarantee tourist water demand to a sustainability scenario from both an environmental, economic, and social point of view. Therefore, it is relevant to question whether there is a large gap between the actions and focus of attention in each of these three areas (scientific, decision-makers, and stakeholders). In other words, does scientific research related to water consumption by the tourism sector adequately respond to the knowledge needs required by stakeholders and decision-makers to achieve the aforementioned sustainability objectives? Through a literature review, this study addresses the main topics, methodologies, and results related to water consumption in hotels on the Spanish Mediterranean coast and their possible impact on the actions made by managers, decision-makers or stakeholders from the tourism sector. To evaluate the science-policy interface, it has also been made a policy review of the main laws, regulations, and plans developed by the different levels of public administration and other private entities in the tourism sector concerning water consumption in hotels, for the Benidorm case study, located in the southeast of Spain. To identify the measures implemented by stakeholders from the tourism sector to reduce water consumption and their vision about the challenges and barriers in this issue, we have taken into account the results of previous projects in which more than twenty surveys and interviews have been carried out to the hotel managers as well as to the Benidorm hotel association (HOSBEC). Likewise, to contextualize the results of these surveys and interviews, we have analyzed the raw water supply data provided by the entity in charge of this service, the Marina Baja Water Consortium, as well as billing and smart meter data from the hotels, provided by the company in charge of the local water supply service, Hidraqua. The results will make possible to highlight the links and differences found between the problems and research approaches raised from the scientific field, the regulations and plans proposed by the public administration and other private decision-makers and the actions and future challenges identified by the tourism sector in the city of Benidorm. The identification of the existing gaps between the three areas (scientists, policy-makers, and stakeholders) will be useful to reshape the agenda of future research and re-think the role of science when responding to managers and decision-makers’ requests on water management and tourism nexus.</p>


Author(s):  
Jacek Wawrzosek ◽  
Syzmon Ignaciuk ◽  
Justyna Stańczyk ◽  
Joanna Kajewska-Szkudlarek

AbstractDevices for water consumption measurement provide data from periodical readings in a non-simultaneous and cumulative manner. This may result in inaccuracies within the process of inference about the short-term habitual patterns of water supply network users. Maintaining systems at the interface between periodic and continuous processes requires the continuous improvement of research methodology. To obtain reliable results regarding the variability of water consumption, the first step should be to estimate it for each observation day by periodic averaging and a possible water balancing approach, but the analysis of the value of estimators obtained in this way usually does not allow for studying autocorrelation. However, other methods indicate the existence of multiplicative parameters characterizing short- and long-term variations in water demand. The purpose of this study is to create a new and deterministic method for tackling the problem associated with a lack of short-term detailed data with fuzzy time series using a multiplicative model for water consumption. Satisfactory results have been obtained, demonstrating that the dispersed data, received in a cumulative manner for random periods of measurement, can be analyzed by the methodology of proposed statistical inference. The observed variability in water consumption may be used in the planning and modernization of water supply systems, development of water demand patterns, hydraulic models, and in the creation of forecasting models of water consumption.


Author(s):  
Abdullah Nafi Baytorun ◽  
Zeynep Zaimoğlu ◽  
Mustafa Ünlü

In areas where water resources are not sufficient, rainwater is collected and used in greenhouse irrigation and this opportunity of nature has great importance for sustainability. In order to determine the amount of precipitation to be stored, the amount of precipitation and plant water consumption should be known. In the narrow coastal strip around Mediterranean region, the water resources are insufficient and the greenhouse producers’ carries water with pipes from very long distances. In this study, daily water consumption of tomatoes grown in greenhouses not regularly heated in Mersin climate conditions is calculated according to different methods. Then, the storage capacity of the remaining part of the precipitation used in the greenhouse has been determined. According to FAO-Radiation method in Mersin climatic conditions, the storage capacity is determined as 0.25 m3.m-2 by using water consumption and precipitation amount. With this water, it was determined that the plant water requirement could be supplied for 7 months between November-May. Greenhouse water consumption is calculated according to the FAO-Blaney - Criddle method and the storage capacity determined to be 0.19 m3.m-2 and the plant water consumption will be supplied during the 6 months period between November - April.


2008 ◽  
Vol 1 (1) ◽  
pp. 45-70 ◽  
Author(s):  
Y. Otaki ◽  
M. Otaki ◽  
P. Pengchai ◽  
Y. Ohta ◽  
T. Aramaki

Abstract. The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet, laundry, bath, and kitchen) both in the dry season and in the rainy season was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season could influence awareness for water resources so that water consumption in the dry season may be smaller than that in the rainy season. It was also examined that whether the differences in water resources such as public waterworks or non-public waterworks like community waterworks, mountainous water and groundwater, affect the water use amount. A small-sized accumulative water meter was developed for measurement. This survey can provide the important information for water demand estimation and water supply planning in middle-developed countries where their water consumption should be expected to increase from here on.


2021 ◽  
Vol 13 (11) ◽  
pp. 6056
Author(s):  
Kang-Min Koo ◽  
Kuk-Heon Han ◽  
Kyung-Soo Jun ◽  
Gyu-Min Lee ◽  
Jung-Sik Kim ◽  
...  

It is crucial to forecast the water demand accurately for supplying water efficiently and stably in a water supply system. In particular, accurately forecasting short-term water demand helps in saving energy and reducing operating costs. With the introduction of the Smart Water Grid (SWG) in a water supply system, the amount of water consumption is obtained in real-time through a smart meter, which can be used for forecasting the short-term water demand. The models widely used for water demand forecasting include Autoregressive Integrated Moving Average, Radial Basis Function-Artificial Neural Network, Quantitative Multi-Model Predictor Plus, and Long Short-Term Memory. However, there is a lack of research on assessing the performance of models and forecasting the short-term water demand in the SWG demonstration plant. Therefore, in this study, the short-term water demand was forecasted for each model using the data collected from a smart meter, and the performance of each model was assessed. The Smart Water Grid Research Group installed a smart meter in block 112 located in YeongJong Island, Incheon, and the actual data used for operating the SWG demonstration plant were adopted. The performance of the model was assessed by using the Residual, Root Mean Square Error, Normalized Root Mean Square Error, Nash–Sutcliffe Efficiency, and Pearson Correlation Coefficient as indices. As a result of water demand forecasting, it is difficult to forecast water demand only by time and water consumption. Therefore, as the short-term water demand forecasting models using only time and the amount of water consumption have limitations in reflecting the characteristics of consumers, a water supply system can be managed more precisely if other factors (weather, customer behavior, etc.) influencing the water demand are applied.


2021 ◽  
Vol 35 (1) ◽  
pp. 84
Author(s):  
Chafda Larasati ◽  
Aji Wijaya Abadi ◽  
M Galih Prakoso ◽  
Novanna Dwi S ◽  
Venny Vivid F ◽  
...  

Abstrak Sumberdaya air penting untuk pemenuhan kebutuhan semua makhluk hidup termasuk manusia. DAS Bodri menyediakan suplai air permukaan melalui sungai-sungai yang ada dalam DAS, yang dapat dimanfaatkan oleh penduduk sekitar. Seiring berjalannya waktu, DAS Bodri mengalami perubahan penggunaan lahan yang menyebabkan terjadinya peningkatan kebutuhan air dan terjadi ketidakseimbangan antara kebutuhan dan ketersediaan air permukaan. Tujuan dari penelitian ini, yaitu mengetahui keseimbangan antara kebutuhan air di masa yang akan datang dengan ketersediaan air permukaan di DAS Bodri tahun 2040. Perhitungan keseimbangan antara kebutuhan dan ketersediaan air permukaan dilakukan dengan membandingkan antara kebutuhan air total dan ketersediaan air permukaan. Parameter kebutuhan air total terdiri dari kebutuhan air domestik, fasilitas kesehatan, fasilitas pendidikan, fasilitas peribadatan, perkantoran, industri, pertokoan dan pasar, warung makan, peternakan, irigasi, dan tambak. Kebutuhan air di tahun mendatang diketahui melalui proyeksi secara eksponensial dan tetap dari data jumlah dalam perhitungan parameter. Kebutuhan air untuk aktivitas domestik dan nondomestik diestimasikan mencapai 2,44 miliar m3 pada tahun 2040. Hasil analisis neraca air menunjukkan bahwa status neraca air DAS Bodri tahun 2010-2019 mengalami defisiensi. Hal tersebut menunjukkan bahwa potensi sumberdaya air permukaan masih belum mencukupi untuk pemenuhan kebutuhan air di DAS Bodri hingga tahun 2040. Abstract Water resources play an important role in meeting the needs of all living things, including humans. The Bodri watershed provides surface water supply through rivers on the watershed, which the local residents can use and utilize. Over time, the Bodri watershed underwent landuse change, which led to an increase in water demand, resulting in an imbalance between water demand and surface water availability. Calculation of the balance between demand and surface water availability is done by comparing the total water demand and the surface water availability. This study aims to determine the balance between future water demand and surface water availability in the Bodri watershed in 2040. The parameters used to determine total water demand consist of water needs of the following sectors; domestic, health facilities, educational facilities, religious facilities, offices, industry, shops and markets, food stalls, livestock, irrigation, and ponds. In the coming year, water demand is known through projections exponentially and permanently from the amount of data in the calculation of parameters. Water demand for domestic and non-domestic activities is estimated to reach 2.44 billion m3 in 2040. The water balance analysis results show that the status of the Bodri watershed water balance in 2010-2019 is deficient. The potential for surface water resources is still insufficient to meet the water needs in the Bodri watershed until 2040.  


Author(s):  
Kang Min Koo ◽  
Kuk Heon Han ◽  
Kyung Soo Jun ◽  
Gyumin Lee ◽  
Jung Sik Kim ◽  
...  

It is crucial to forecast the water demand accurately for supplying water efficiently and stably in a water supply system. In particular, accurately forecasting short-term water demand helps in saving energy and reducing operating costs. With the introduction of the Smart Water Grid (SWG) in a water supply system, the amount of water consumption is obtained in real time through an advanced metering infrastructure (AMI) sensor, which can be used for forecasting the short-term water demand. The models widely used for water demand forecasting include the autoregressive integrated moving average, radial basis function-artificial neural network, quantitative multi-model predictor plus, and long short-term memory. However, there is a lack of research on assessing the performance of models and forecasting the short-term water demand by applying the data on the amount of water consumption by purpose and the pipe diameter of an end-use level of the SWG demonstration plant in each demand forecasting model. Therefore, in this study, the short-term water demand was forecasted for each model using the data collected from the AMI, and the performance of each model was assessed. The Smart Water Grid Research Group installed ultrasonic-wave-type AMI sensors in the block 112 located in YeongJong Island, Incheon, and the actual data used for operating the SWG demonstration plant were adopted. The performance of the model was assessed by using the residual, root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (NSE), and Pearson correlation coefficient (PCC) as indices. The water demand forecast was slightly underestimated in models that employed the assessment results based on the RMSE and NRMSE. Furthermore, the forecasting accuracy was low for the NSE due to a large number of negative values; the correlation between the observed and forecasted values of the PCC was not high, and it was difficult to forecast the peak amount of water consumption. Therefore, as the short-term water demand forecasting models using only time and the amount of water consumption have limitations in reflecting the characteristics of consumers, a water supply system can be managed more precisely if other factors (weather, customer behavior, etc.) influencing the water demand are applied.


Author(s):  
Karolina Yu. Popova ◽  

The article examines the formation and use of water resources in Egypt, as the most important producer of agricultural products not only in the Middle East, but throughout Africa. The intensification of agricultural production in an arid climate requires an increasing volume of water consumption, which implies, on the one hand, an increase in the water-covered area of artificial origin, and, on the other hand, the introduction of measures to save water and search for sources, first of all, through desalination.


Sign in / Sign up

Export Citation Format

Share Document