Efficacy of Acid-Modified Sawdust in Decolourization of Tanning Waste Water

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Alhassan, M. ◽  
Suleiman, M. ◽  
Isah, A. A. ◽  
Abdulrashid, A. G. ◽  
Nasiru, Y. ◽  
...  

Colour removal from dye-bearing effluent is a serious challenge due to the difficulty in treating such wastewater by conventional treatment methods. The present investigation explores the decolourization of contaminated wastewater using saw dust as an adsorbent. The physicochemical properties of waste water samples labelled A, B and C viz average temperature; pH; electrical conductivity; and total dissolved solids were 302.63; 6.1; 284.47 µS/cm; 35116.66 mg/L respectively. Colour removal efficiency of the adsorbent was studied under variable conditions (contact time, rate of agitation, loading). Experimental results demonstrated that the sawdust adsorbent has a significant capacity for colour removal from tannery effluent. There was significant variation in the absorbance of the treated samples. Adsorbent dose, stirring rate and contact time showed significant effects in colour removal.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Alhassan ◽  
M. Suleiman ◽  
A. A. Isah ◽  
A. G. Abdulrashid ◽  
Y. Nasiru ◽  
...  

Colour removal from dye-bearing effluent is a serious challenge due to the difficulty in treating such wastewater by conventional treatment methods. The present investigation explores the decolourization of contaminated wastewater using acid-activated sawdust as an adsorbent. The physicochemical properties of wastewater samples labelled A, B, and C vizaverage temperature; pH; electrical conductivity; and total dissolved solids were determined using standard methods to be 302.63; 6.1; 284.47 µS/cm;35116.66 mg/L respectively. Colour removal efficiency of the adsorbent was studied under variable conditions (contact time, rate of agitation,loading). Experimental results demonstrated that the sawdust adsorbent has a significant capacity for colour removal from tannery effluent. There was significant variation in the absorbance of the treated samples. Adsorbent dose, stirring rate, and contact time were found to be directly proportional to colour removal while pH variation of the samples show that the effluents became less alkaline (slightly acidic) after decolourization.


1970 ◽  
Vol 23 ◽  
pp. 93-101 ◽  
Author(s):  
T. P. Dhungana ◽  
P. N. Yadav

Spectrophotometric method using diphenylcarbazide as a colour developing reagent has been used to analyze the chromium content in tannery effluent located in Bara and Parsa districts of Nepal and Sirsiya River which is an ultimate drainage of these waste water streams. The adsorption of hexavalent chromium from aqueous solution onto formaldehyde treated sawdust and charcoal of sugarcane begasses has been investigated at various Cr(VI) concentrations of 5-40 mg/L and pH values. From the experimental observations, it has been found that chromium can be removed quantitatively at the equilibrium pH range of around 1 and the adsorption behavior revealed to follow Langmuir and Freundlich adsorption isotherms.Keywords : chromium, diphenylcarbazide, adsorption.DOI: 10.3126/jncs.v23i0.2102Journal of Nepal Chemical Society, Vol. 23, 2008/2009 Page; 93-101


Author(s):  
Ningsih Ika Pratiwi ◽  
Annisa Huwaida ◽  
Shinta Indah ◽  
Denny Helard

Pumice is known as a low-cost material with a porous structure, has the potential as an adsorbent to remove various kinds of pollutant compounds. The abundance of pumice is found in Sungai Pasak area and it never been utilized. This study was performed to see the ability of Sungai Pasak pumice as an adsorbent for ammonium removal in water along with its ability to be regenerated. The study was carried out triplo in batches to obtain optimum adsorption conditions which were then used in desorption experiments using HCl 0.1 M agent for regeneration process. The optimum conditions obtained: adsorbate pH 6, adsorbent dose 0.3 g/l, contact time 30 minutes, adsorbent diameter 63 µm and adsorbate concentration 4 mg/l. The results showed that pumice has ability to remove ammonium with adsorption capacity at optimum conditions were 47.06% and 6.27 mg/g with Freundlich's isotherm equation (R2=0.997). Acid agents are able to adsorb ammonium from pumice with an average desorption percentage 88.89% after 2 times of reuse, proving that acidic agents are able to regenerate pumice adsorbents so they can be reused. The potential for adsorption and regeneration of the Sungai Pasak pumice can be utilized to treat water with ammonium such as groundwater and waste water.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


2016 ◽  
Vol 18 (2) ◽  
pp. 426-436 ◽  

<p>In this study, the removal of cadmium by using pumice coated with iron nanoparticles (INPs) from synthetic wastewater was investigated. The effects of parameters influencing adsorption: contact time (10-20 min), pH (3-9), initial cadmium concentration (25-125 mg l<sup>-1</sup>) and adsorbent dose (2-10 g l<sup>-1</sup>) were studied. The pumice stone used in this research was, first, crashed and then sieved with 20 mesh standard sieves (0.85 mm); finally, it was coated with INPs. An atomic absorption spectrophotometer was used to measure cadmium contents and isotherm models and adsorption kinetics were studied. The results showed the adsorption process of cadmium reached equilibrium at contact time of 80 min. With increasing pH solution, the efficiency enhanced which peaked at pH 7-8. Cadmium concentration increase resulted in a decrease in efficiency, whereas adsorbent dose increase improved it. Equilibrium data of adsorption followed isotherms models: Langmuir and Freundlich. The highest removal efficiency and adsorption capacity were, respectively, 83% and 17.27 mg g<sup>-1</sup>. Furthermore, absorption kinetics is better described by the pseudo second-order model. According to the results obtained, pumice coated with INPs is an effective adsorbent and can be introduced as a suitable option in practical applications</p>


2008 ◽  
Vol 5 (3) ◽  
pp. 399-405
Author(s):  
Baghdad Science Journal

Bioremoval of chromium from wastewater of tannery factory in Iraq was studied. The bacteria Proteus vulgaris 7E showed an enhanced capability in biosorping chromium when its concentration increased in the solution, reaching a maximum of 476,7 mg/ ml out of 492 mg/ ml under optimum conditions at pH 6 and 50°C at one hour contact time and biomass of 1 mg/ml. The present results showed that dead cells of P. vulgaris 7E biosorbed 87.41 mg/ml of chromium in comparison with91.18 mg/ml of chromium biosorbed by living cells, this indicates the insignificant effect of physiological state of cells. It was found that the above biosorption is physico-chemical process depends upon electrostatic attraction forces. The results has illustrated that the most efficient eluting solution was 0.1M HCL which recovered 85% of biosorbed chromium. P. vulgaris 7E was able to remove completely all chromium from the waste water taken from tannery factory.


2018 ◽  
Vol 36 (3-4) ◽  
pp. 1112-1143 ◽  
Author(s):  
Mohammad Hossein Karimi Darvanjooghi ◽  
Seyyed Mohammadreza Davoodi ◽  
Arzu Y Dursun ◽  
Mohammad Reza Ehsani ◽  
Iman Karimpour ◽  
...  

In this study, treated eggplant peel was used as an adsorbent to remove Pb2+ from aqueous solution. For this purpose batch adsorption experiments were performed for investigating the effect of contact time, pH, adsorbent dose, solute concentrations, and temperature. In order to assess adsorbent’s physical and chemical properties, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used. The results showed that the adsorption parameters for reaching maximum removal were found to be contact time of 110 min, adsorbent dose of 0.01 g/ml, initial lead(II) concentration of 70 ppm, pH of 4, and temperature of 25°C. Moreover, for the experiments carried out at pH > 4 the removal occurred by means of significant precipitation as well as adsorption. Furthermore, these results indicated that the adsorption followed pseudo-second-order kinetics model implying that during the adsorption process strong bond between lead(II) and chemical functional groups of adsorbent surface took place. The process was described by Langmuir model (R2 = 0.99; maximum adsorption capacity 88.33 mg/g). Also thermodynamics of adsorption was studied at various temperatures and the thermodynamic parameters including equilibrium constant (K), standard enthalpy change, standard entropy change, and standard free energy changes were obtained from experimental data.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tesfaye Akafu ◽  
Achalu Chimdi ◽  
Kefyalew Gomoro

Exposure to fluoride beyond the recommended level for longer duration causes both dental and skeletal fluorosis. Thus, the development of cost-effective, locally available, and environmentally benign adsorbents for fluoride removal from contaminated water sources is absolutely required. In the present study, diatomaceous earth (diatomite) locally available in Ethiopia, modified by treating it with an aluminum hydroxide solution, was used as an adsorbent for fluoride removal from aqueous solutions. Adsorption experiments were carried out by using batch contact method. The adsorbent was characterized using FT-IR spectroscopy. Effects of different parameters affecting efficiency of fluoride removal such as adsorbent dose, contact time, initial fluoride concentration, and pH were investigated and optimized. The optimum adsorbent dose, contact time, initial fluoride concentration, and pH values were 25 g/L, 180 min, 10 mg/L, and 6.7, respectively. The performance of the adsorbent was also tested under optimum conditions using groundwater samples taken from Hawassa and Ziway. Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Compared to Langmuir isotherm (R2 = 0.888), the Freundlich isotherm (R2 = 0.985) model was better fitted to describe the adsorption characteristics of fluoride on Al-diatomite. The Langmuir maximum adsorption capacity was 1.67 mg/g. The pseudosecond-order model was found to be more suitable than the pseudofirst-order to describe the adsorption kinetics. The low correlation coefficient value of R2 = 0.596 for the intraparticle diffusion model indicates that the intraparticle diffusion model does not apply to the present studied adsorption system. The maximum fluoride removal was observed to be 89.4% under the optimum conditions which indicated that aluminum hydroxide-modified diatomite can be used as efficient, cheap, and ecofriendly adsorbents for the removal of fluoride from contaminated water.


Sign in / Sign up

Export Citation Format

Share Document