scholarly journals Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tesfaye Akafu ◽  
Achalu Chimdi ◽  
Kefyalew Gomoro

Exposure to fluoride beyond the recommended level for longer duration causes both dental and skeletal fluorosis. Thus, the development of cost-effective, locally available, and environmentally benign adsorbents for fluoride removal from contaminated water sources is absolutely required. In the present study, diatomaceous earth (diatomite) locally available in Ethiopia, modified by treating it with an aluminum hydroxide solution, was used as an adsorbent for fluoride removal from aqueous solutions. Adsorption experiments were carried out by using batch contact method. The adsorbent was characterized using FT-IR spectroscopy. Effects of different parameters affecting efficiency of fluoride removal such as adsorbent dose, contact time, initial fluoride concentration, and pH were investigated and optimized. The optimum adsorbent dose, contact time, initial fluoride concentration, and pH values were 25 g/L, 180 min, 10 mg/L, and 6.7, respectively. The performance of the adsorbent was also tested under optimum conditions using groundwater samples taken from Hawassa and Ziway. Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Compared to Langmuir isotherm (R2 = 0.888), the Freundlich isotherm (R2 = 0.985) model was better fitted to describe the adsorption characteristics of fluoride on Al-diatomite. The Langmuir maximum adsorption capacity was 1.67 mg/g. The pseudosecond-order model was found to be more suitable than the pseudofirst-order to describe the adsorption kinetics. The low correlation coefficient value of R2 = 0.596 for the intraparticle diffusion model indicates that the intraparticle diffusion model does not apply to the present studied adsorption system. The maximum fluoride removal was observed to be 89.4% under the optimum conditions which indicated that aluminum hydroxide-modified diatomite can be used as efficient, cheap, and ecofriendly adsorbents for the removal of fluoride from contaminated water.

2015 ◽  
Vol 17 (1) ◽  
pp. 186-197 ◽  

<div> <p>This work investigated the potential of calcined electrocoagulation sludge (CES) within metals hydroxide generated during removal of boron using Al electrode for adsorption of fluoride from aqueous solution. The effects of contact time, pH of the solution (2-10), stirrer speed (50-450 rpm), initial concentration (5-100<br /> mg l<sup>-1</sup>), adsorbent dose (1-4 mg l<sup>-1</sup>), solution temperature (293-333 K) and particle size (0.125-1000 &micro;m) on fluoride removal were investigated. All the experiments were carried out by batch mode. It was found that the maximum adsorption takes place within 2 h at pH 6.0. The adsorption removal increased with increase in the adsorbent dose, but decreased with increase in fluoride concentration. It was found that the adsorption removal decreases with increase in temperature, which showed that the adsorption process was exothermic in nature. The decrease in particle size increased fluoride removal efficiency. The maximum adsorption capacity (q<sub>m</sub>) increased from 45.5 to 124.6 mg g<sup>-1</sup> when the adsorbent dosage was adjusted to 1 instead of 4 g l<sup>-1</sup>. The Freundlich isotherm and Langmuir isotherm were used to fit the data of equilibrium experiments. The adsorption data fitted well into the linearly transformed Langmuir equation. The efficiency of CES to remove fluoride was found to be 99.99% at pH 6, contact time for 2 h, dose of 4 g l<sup>-1</sup>, when 25 mg l<sup>-1</sup> of fluoride was present in 100 ml of water. Comparison with literature reported values of q<sub>m</sub>, it was found that CES was an attractive adsorbent.</p> </div> <p>&nbsp;</p>


2017 ◽  
Vol 866 ◽  
pp. 99-103
Author(s):  
Woravith Chansuvarn

A batch process of defluoridation using raw material of autoclaved aerated concrete (AAC) was studied under optimum conditions. The parameters of adsorption method, such as pH, adsorbent dose and contact time were optimized under batch experiments. SPADNS method was used to quantitatively evaluate the residual fluoride concentration. Under optimum conditions, pH of solution, adsorbent dose and contact time was to be 7, 0.1 g/10 mL and 60 min, respectively. The amount of defluoridation was found to be 3.23 mgF-/gACC. Deflouridation capacity of AAC can be explained on the basis of the chemical interaction of fluoride with the metal oxides under suitable pH conditions. The adsorption process was found to follow first order rate mechanism as well as Freundlich isotherm.


Author(s):  
Faheem Akhter ◽  
Arsalan A. Jokhio ◽  
Javed A. Noonari

Moringa Oleifera is considered to be a natural bio-adsorbent. Unlike chemical coagulants, Moringa Oleifera seeds are environment friendly with various other advantages. The present study investigated the fluoride removal efficiency of Moringa Oleifera from water. Influence of adsorbent dose (1, 2, 4 g/L), contact time (20, 40 and 60 min) and initial fluoride concentration (2 and 5 mg/L) over removal efficiency were determined and optimized. It was found that increased adsorbent dose and contact time enhanced the removal efficiency which is in agreement with the previous studies. The highest removal of 88.1% was achieved when the adsorbent dose and contact time were optimized to 4 g/L and 60 minutes with an initial fluoride concentration of 2 mg/L. The results showed that Moringa Oleifera can be used as an environment friendly, cheap and effective bio-adsorbent for fluoride removal from aqueous solution. All the experimental facilities were provided by Bio-Fuel Lab, Energy & Environment Department, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan. The samples were analyzed at the Pakistan Council of Research in Water Resources (PCRWR), Tando Jam, Pakistan.


2020 ◽  
Vol 10 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Jihane Assaoui ◽  
Zineb Hatim ◽  
Abdelmoula Kheribeche

A novel adsorbent was obtained by a facile precipitation method and was used for fluoride removal from aqueous solution. Mineralogical and physicochemical characterization of the adsorbent was carried out by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Energy Dispersive X-Ray attached to Scanning Electron Microscopy (SEM-EDX), BET Specific Surface Area(SSAN2BET) analysis and Fourier-Transform Infrared Spectrometry (FTIR). The effect of various operational parameters such as contact time, initial fluoride concentration, (20-160 mg L-1) adsorbent dose (1-6 g L-1) and initial pH solution (3-11) was evaluated in batch procedures at room temperature (25±2°C). The results of the batch adsorption experiments proved that 24 h of contact time was sufficient for attaining equilibrium. The maximum wastewater defluoridation (84.91%) was obtained for 40 mg L-1 and 3 g L-1 of initial fluoride concentration and adsorbent dose, respectively. It appears that there was no significant effect on the F- removal over a wide range of pH 3-11. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order. The adsorption isotherm of fluoride sorption indicated that the maximum adsorption capacity was noted to be 43.29 mg g-1. Batch adsorption data was better described by Langmuir isotherm confirming monolayer adsorption with homogenous distribution of active sites and without interaction between adsorbed molecules. The obtained results indicated that the ion exchange is probably the main mechanism involved in the F- adsorption by the aluminium-based adsorbent.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (&gt;0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2016 ◽  
Vol 6 (4) ◽  
pp. 593-601
Author(s):  
Chidozie Charles Nnaji ◽  
Stephen Chinwike Emefu

Experiments investigating lead adsorption by activated sawdust of different particle sizes of two timber species were conducted. The experimental data were fitted to isothermal and kinetic models. The optimum particle size was 0.85 mm for Khaya ivorensis and 1.18 mm for Pycanthus angolensis. The adsorption of lead by Khaya ivorensis and Pycanthus angolensis conformed to the Langmuir isotherm (0.83 ≤ R2 ≤ 0.96 and 0.86 ≤ R2 ≤ 0.98, respectively) and Freundlich isotherm (0.69 ≤ R2 ≤ 0.97 and 0.94 ≤ R2 ≤ 1.0, respectively). The adsorption process for the two species of timber was controlled by solute transport in the bulk liquid and intraparticle diffusion which was confirmed by good agreement of experimental data with pseudo-first-order kinetics (0.96 ≤ R2 ≤ 1.0 for Khaya ivorensis and 0.9 ≤ R2 ≤ 1.0 for Pycanthus angolensis) and the intraparticle diffusion model (0.9 ≤ R2 ≤ 0.99 for Khaya ivorensis and 0.84 ≤ R2 ≤ 0.97 for Pycanthus angolensis). A new kinetic model was developed with R2 of 0.93 ≤ R2 ≤ 0.99 for Khaya ivorensis and 0.88 ≤ R2 ≤ 1.0 for Pycanthus angolensis.


2016 ◽  
Vol Volume 112 (Number 11/12) ◽  
Author(s):  
Rabelani Mudzielwana ◽  
Mugera W. Gitari ◽  
Titus A.M. Msagati ◽  
◽  
◽  
...  

Abstract Groundwater is a widely used and affordable source of drinking water in most of the rural areas of South Africa. Several studies have indicated that groundwater in some boreholes in South Africa has a fluoride concentration above the level recommended by the World Health Organization (1.5 mg/L). Fluoride concentrations above the permissible limit (>1.5 mg/L) lead to dental fluorosis, with even higher concentrations leading to skeletal fluorosis. In the present work, we evaluate the application of smectite-rich clay soil from Mukondeni (Limpopo Province, South Africa) in defluoridation of groundwater. The clay soil was characterised by mineralogy using X-ray diffraction, by elemental composition using X-ray fluorescence and by morphology using scanning electron microscopy. Surface area and pore volume was determined by the Brunauer–Emmett–Teller surface analysis method. Cation exchange capacity and pHpzc of the soil were also evaluated using standard laboratory methods. Batch experiments were conducted to evaluate and optimise various operational parameters such as contact time, adsorbent dose, pH and initial adsorbate concentration. It was observed that 0.8 g/100 mL of smectite-rich clay soil removed up to 92% of fluoride from the initial concentration of 3 mg/L at a pH of 2 with a contact time of 30 min. The experimental data fitted well to a Langmuir adsorption isotherm and followed pseudo second order reaction kinetics. Smectite-rich clay soil showed 52% fluoride removal from field groundwater with an initial fluoride concentration of 5.4 mg/L at an initial pH of 2 and 44% removal at a natural pH of 7.8. Therefore smectite-rich clay soil from Mukondeni has potential for application in defluoridation of groundwater. Chemical modification is recommended to improve the defluoridation capacity.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1880
Author(s):  
José A. Pellicer ◽  
María Isabel Rodríguez-López ◽  
María Isabel Fortea ◽  
Vicente M. Gómez-López ◽  
David Auñón ◽  
...  

Two cyclodextrins (CDs), γ– and hydroxypropyl (HP)–γ–CDs were used to synthesize new adsorbents by using epichlorohydrin (EPI) as cross-linking agent in order to remove Direct Red 83:1 (DR) from water. Both polymers were characterized in terms of Fourier spectroscopy, nuclear magnetic resonance, particle size distribution and thermogravimetric analysis. Experimental data for both polymers were well fitted to the pseudo-second order and intraparticle diffusion model, indicating that in the adsorption both chemical and physical interactions are essential in the removal of DR. Three different isotherm models were analyzed, concluding that γ–CDs–EPI followed the Temkin isotherm and HP–γ–CDs-EPI the Freundlich isotherm, these results suggested that the adsorption was happening onto heterogeneous surfaces. The results of the Gibbs free energy showed that the adsorption was spontaneous at room temperature. In order to eliminate the remaining dye after the polymer treatment, and advanced oxidation process (AOP) was considered, achieving more than 90% of removal combining both mechanisms.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Rajeshkannan Rajan ◽  
Manivasagan Rajasimman ◽  
Rajamohan Natarajan

In this study, the use of wheat bran as a possible adsorbent has been successfully demonstrated in the removal of Acid blue9 (AB9) from aqueous solution. The effect of different parameters such as temperature, adsorbent dose, contact time, adsorbent size and agitation speed were investigated. The optimum conditions obtained from response surface methodology are: temperature-38.1°C, adsorbent dose (3.1g/L), contact time (206 min), adsorbent size 0.1mm (150mesh), and agitation speed (222rpm). The effect of pH and initial substrate concentration were studied. The pseudo-first order and pseudo-second order kinetics were tested. The sorption equilibrium, expressed by the Langmuir and Freundlich equations, indicated that the process was in compliance with Freundlich isotherm.


Sign in / Sign up

Export Citation Format

Share Document