scholarly journals Studies on colour removal efficiency of textile dyeing waste water using Moringo Olifera

2014 ◽  
Vol 1 (5) ◽  
pp. 6-10
Author(s):  
Sujith Alen ◽  
Vinodha S
2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohammed Jibril ◽  
Jaafar Noraini ◽  
Lai Shiou Poh ◽  
Abdullahi Mohammed Evuti

Dalam kajian ini, satu siri eksperimen penjerapan berkelompok telah dijalankan untuk menyiasat kecekapan penyingkiran warna oleh CSAC dan CACs daripada air sisa. Kecekapan penjerapan telah dinilai dengan mengukur peratus penyingkiran warna. Kesan larutan pH, kepekatan adsorben, masa betindak balas dan kepekatan warna asal terhadap kecekapan penyingkiran warna juga telah disiasat. Penjerapan warna optimum dicapai pada pH rendah (pH 1.68), kepekatan warna asal yang rendah (50mg/l) dan 12g/l dos karbon dengan kecekapan penyingkiran sebanyak 75% untuk CAC dan 45% bagi CSAC, dengan pergolakan selama satu jam. Kecekapan penyingkiran warna yang rendah iaitu 25% untuk CAC dan 17% untuk CSAC telah diperoleh pada pH tinggi (ph 9-12), kepekatan warna asal yang tinggi iaitu 100mg/l dan dos karbon yang rendah untuk tempoh penahanan yang sama. Perbandingan antara model isotherm Langmuir dan Freundlich ke atas data penjerapan menunjukkan bahawa model isotermal Langmuir menunjukkan keputusan yang lebih baik dengan pekali korelasi, R2 yang lebih tinggi. Keputusan menunjukkan bahawa CSAC boleh digunakan sebagai alternatif kos rendah untuk CAC untuk menyingkirkan pewarna daripada air sisa tetapi kecekapannya penyingkirannya adalah lebih rendah berbanding CAC. Kata kunci: Warna pengeluaran; air sisa; arang batu; kelapa shell; karbon teraktif; Adsorpsi sesuhu In this study, series of batch adsorption experiment were conducted to examine the color removal efficiency of CSAC and CACs from waste water. The CAC is coal base activated carbon while the CSAC was manufactured in the laboratory. Yellow dye colour (Tartrazine E102) was utilized as the colourant. The adsorption efficiencies of the adsorbents were evaluated and compared by measuring the percentage of color removed. The effects of solution pH, adsorbent concentration, contact time as well as initial color concentration on the colour removal efficiency were also investigated. The optimum adsorption of color was achieved at low pH (pH 1.68), low initial color concentration (50mg/L) and 12g/l carbon dosage with removal efficiency of 75% for CAC and 45% for CSAC, with one hour agitation. Lower colour removal efficiency of 25% for CAC and 17% for CSAC were obtained at higher pH (pH 9-12), higher initial color concentration (100mg/L) and low carbon dosage, under the same retention time. A comparison of the Langmuir and Freundlich isotherm models of the adsorption data shows that Langmuir isotherm shows higher correlation coefficient, R2. The results indicate that CSAC has the potential as a low cost alternative for colour removal but the efficiency is lower than CSAC. Keywords: Color removal; waste water; coal; coconut shell; activated carbon; adsorption isotherm


2019 ◽  
Vol 31 (8) ◽  
pp. 1835-1841
Author(s):  
Parameswari Kalivel ◽  
Jegathambal Palanichamy ◽  
Mano Magdalene Rubella

Electrocoagulation methods are being used for the alternative treatment process for the remediation of textile waste water. This work primarily deals with the treatment of textile dyeing waste water followed by the utilization of waste material. The purpose of the proposed study is to evaluate the potential of electrocoagulatison process using Ti2O3/Zn electrode prepared by spray pyrolysis using TiCl3 and compared the performance with Zn electrodes. The surface morphology, structural analysis and percentage composition of the elements of the Ti2O3/Zn electrode was studied by SEM, XRD and EDS analysis. The efficiency of electrocoagulation treatment process to treat synthetic waste water containing Coralene Navy RDRLSR, Coralene Red 3G, Rubru RD GLFI dye was studied for the effect of operational parameters. The result indicates that this process was able to achieve colour removal (97.2 %) at pH 8.5, with 34.42 % less energy consumption with Ti2O3/Zn compared with zinc electrodes.


Author(s):  
Irshad. S. Shaikh

Textile industry is one of the major industries in the world that provide employment with no required special skills and play a major role in the economy of many countries. The textile industry utilizes various chemicals and large amount of water during the production process. Colour is the major pollutants present in the effluent from various textile industries. These are highly toxic to living things and have hazardous effect on their health. Thus removal of colour using natural flocculant is a major step towards the protection of natural resources. Coagulation-flocculation is the most widely used method and is applicable for the removal of the colour even at low concentrations. This paper represents the results of investigations carried out for the removal of colour along with SS, DS, TS and COD from waste water by using natural flocculant i.e. Cactus, Aloevera, and combination of Cactus & Aloevera. The colour removal efficiency of flocculant was investigated by batch wise coagulation flocculation method. The effect of various important parameters on the % removal of colour was studied to find the optimum condition for the maximum removal of colour. The parameters like pH, coagulant dose, flocculant dose, coagulant mixing time, coagulant mixing speed, flocculant mixing time, flocculant mixing speed, setting time & concentration of waste water were investigated. These parameters for Cactus were found to be 12, 10 ml/L, 20 ml/L, 2 min, 140 rpm, 15 min, 70 rpm, 6 min, 300 ml/L respectively, for Aloevera were Journal of Water Resource Engineering & Pollution Studies Volume 5 Issue 1 found to be 11.5, 10 ml/L, 100 ml/L, 2 min, 140 rpm, 15 min, 30 rpm, 1 min, 300 ml/L respectively and simultaneously for combination of Cactus & Aloevera were found to be 12, 10 ml/L, 10% + 80% (Cactus + Aloevera dose) ml/L, 2 min, 140 rpm, 25 min, 50 rpm, 10 min, 300 ml/L respectively. These natural flocculants gives maximum colour removal efficiency in the range 85-100%. The colour removal efficiency was found in between 85-100% for all parameters. All the result was validated on the basis of mathematical analysis. All the graphs were fitted to various trend lines out of which polynomial third order curve is best fit to experimental work as the coefficient of correlation (R2 value) is closer to unity.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Taty Hernaningsih

Waste water treatment by industry usually uses chemicals that may lead to additional environmental pollution load. On the other hand, water demand increases and environmental regulations regarding waste water disposal requirements that apply more stringent. It is necessary for waste treatment technique that accommodate this requirement. Electrocoagulation process is a technique of wastewater treatment that has been chosen because the technique is environmentally friendly. This paper will review some of the research or application electrocoagulation process which is conducted on industrial waste water. Types of industrial waste water that is to be reviewed include: industries batik, sarongs, textiles, palm oil, slaughterhouses, food, leather tanning, laundry, pulp and paper. Overview reviewed in this research include the waste water treatment process in several processing variations such as: change in time, electricity and kind of electrodes. The results of the research with electrocoagulation process in the industry are the removal efficiency of TSS, COD, BOD5, Chrome, phosphate, surfactants, color turbidity influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. The results of the study with electrocoagulation process in the industry is the removal efficiency of TSS, COD, BOD5, chromium, phosphate, surfactant, turbidity color that are influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. It is hoped the information presented in this article can be a reference for similar research for the improvement of research on the process ektrokoagulasi.Key words: elektrocoagulation, removal eficiency, environmental friendly


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2018 ◽  
Vol 20 (4) ◽  
pp. 49-59 ◽  
Author(s):  
I.A. Obiora-Okafo ◽  
O.D. Onukwuli

Abstract The performance of Vigna unguiculata coagulant (VUC) for colour removal from acid dye was investigated in this study. The proximate, structure and morphology of the coagulant were investigated using standard official methods, Fourier-Transform Infrared (FTIR) spectrometer and scanning electron microscopy (SEM), respectively. Response surface methodology (RSM) using face-centred central composite design (FCCD) optimized four process variables including pH, coagulant dosage, dye concentration and time. The colour removal efficiency obtained from the optimization analysis was 99.26% at process conditions of pH 2, coagulant dosage 256.09 mg/l, dye concentration 16.7 mg/l and time 540 min. The verification experiments agreed with the predicted values having a standard error value of 1.96%. Overlay contour plot established optimum areas where the predicted response variable is in an acceptable range (≥ 70%) with respect to optimum conditions. The FCCD approach was appropriate for optimizing the process giving higher removal efficiency when compared to the main effect plots.


2019 ◽  
Author(s):  
Gourav Patel ◽  
Kirti Pawar ◽  
Kishan D. Nishad
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 968
Author(s):  
Jie Zhong ◽  
Bin Yang ◽  
Yong Feng ◽  
Yang Chen ◽  
Li-Gao Wang ◽  
...  

Heterogeneous photo–Fenton reactions have been regarded as important technologies for the treatment of textile dyeing wastewaters. In this work, an efficient core-shell magnetic anion exchange resin (MAER) was prepared through in situ polymerization and used to remove reactive brilliant red (X-3B) in a UV–Fenton system. The MAER exhibited satisfactory removal efficiency for X-3B because of its highly effective catalytic activity. More than 99% of the X-3B (50 mg/L) was removed within 20 min in the UV–Fenton reaction. This is because the uniformly dispersed core-shell magnetic microsphere resin could suppress the aggregation of Fe3O4 nanoparticles and, thus, enhance the exposure of Fe reaction sites for catalytic reaction with H2O2. The good adsorption capacity of MAER also played an important role in promoting contact between X-3B and reactive radicals during the reaction. Mechanism research showed that hydroxyl radical (•OH) was the main reactive radicals for the removal of X-3B in the MAER UV–Fenton system. The MAER can be easily separated by a magnet after catalytic reactions. Moreover, the matrix effects of different substrates (Cl−, NO3−, SO42−, and humic acid) were investigated. The results showed that SO42− could be beneficial to improve the removal of X-3B but that the others decrease the removal. The MAER UV–Fenton also removed significant amounts of total organic carbon (TOC) for the X-3B solution and an actual textile dyeing industrial wastewater. The heterogeneous oxidation system established in this work may suggest prospects for practical applications in the treatment of textile dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document