Yield parameters of Beta beets as a basis to estimate the biogas yield

2014 ◽  
pp. 169-176 ◽  
Author(s):  
Philipp Starke ◽  
Christa Hoffmann

High biogas yields are expected from sugar beet because of its high root yield. But it has not been analysed yet, which varieties are best suited to reach the highest biogas yield. The study thus aimed at identifying a parameter to estimate the biogas yield of sugar beet. To get a broad variation of yields and beet qualities, field trials were conducted from 2008 to 2011 at 2 sites (Göttingen and Regensburg, Germany) with different sugar beet varieties and fodder beet. Different N application rates were included and furthermore, autumn sown beets (winter beet). Dry matter composition was analyzed, biogas yield and methane concentration were determined in batch experiments. Sugar beet reached root dry matter yields of more than 20tha–1 and thereby exceeded fodder beet. Moderate N application increased root dry matter yield, whereas higher N rates only enhanced the leaf dry matter yield. But most likely, leaves will not be considered for fermentation because of their low concentration of dry matter and organic dry matter. Winter beet reached total dry matter yields of 12tha–1, but dry matter was not as easily digestible as that of spring sown beets. Biogas yield showed a close linear relation to the root dry matter and the sugar yield as well. Sugar beet varieties can therefore be assessed for anaerobic digestion by their sugar yield. As sugar yield is already the main target, breeding for biogas beets will not be substantially different from that for beets used for sugar manufacture.

2011 ◽  
pp. 555-564
Author(s):  
Christa Hoffmann

Since sugar beet varieties differ in beet yield and quality, varieties may exist which are more profitable for a harvest including the crown because of a larger crown with a better quality compared to other varieties. In 2009 and 2010 field trials with 8 sugar beet varieties and one fodder beet were conducted at 4 sites, and additionally a field trial with N application from 0, 100, 200, and 300 kg N ha–1. At harvest the crown was removed manually below the green leaf scares, root and crown were analyzed separately. The results show that yield and quality of the crown have not changed in relation to the root during the breeding progress. Differences among varieties in yield and quality continue in the crown. Varieties can, therefore, be chosen according to the known variety characteristics also when the crown is harvested. For the use in the fermentation process the incorporation of the crown will result in yield increase which is similar for all varieties. There were only little differences in leaf dry matter and similar root to leaf ratios for the sugar beet varieties. Increasing N application caused an increase of the amino N and sodium concentration, which was more pronounced in the crown than in the root. The concentration of invert sugar, raffinose, betaine and glutamine was higher in the crown than in the root. However, changes were similar for all varieties. The effect of these changes in quality on the sugar recovery process can only be studied in processing experiments.


2014 ◽  
pp. 232-240 ◽  
Author(s):  
Philipp Starke ◽  
Christa Hoffmann

Sugar beet is considered as biogas substrate because of its high yield. However, varieties differ in quality, in particular sugar content, which might affect biogas formation. The study aimed at analysing the impact of different beet qualities on biogas formation. Furthermore, parameters describing beet quality for anaerobic digestion should be found. From 2009 to 2011 field trials with several sugar beet varieties and a fodder beet variety were conducted with different N application rates at sites near Göttingen and Regensburg to get a broad range of beet qualities. The dry matter composition of beets, leaves, winter beet, bolters and maize was analysed. Discontinuous batch trials with fresh beet material were conducted to determine biogas formation. Sugar beet varieties did not differ in their dry matter composition and thus in biogas formation, whereas differences occurred between sugar beet and other substrates. Sugar beet was characterised by a high content of organic dry matter (98% oDM). The degradation time was mainly affected by the crude fibre content of the material. Therefore 90% of the biogas from sugar beet was formed within 3.5 days, whereas from winter beet, bolters and maize it took more than 10 days. The calculation of the specific biogas yield of different sugar beet qualities with two formulae resulted in lower values than determined in batch trials. A formula was derived to assess sugar beet quality for anaerobic digestion based on the sugar content, as increasing sugar contents lead to increasing specific biogas yields per kilogramme fresh matter.


1971 ◽  
Vol 76 (2) ◽  
pp. 261-267 ◽  
Author(s):  
A. P. Draycott ◽  
D. J. Webb

SUMMARYFive experiments (1965–9) on calcareous sandy loam tested all combinations of four amounts of nitrogen (0–1·8 cwt/acre N) and four plant populations (8000–54 000 plants/ acre) given to sugar beet grown with and without irrigation. On average, nitrogen and plant population influenced yields greatly but irrigation relatively little. In all years between 0·6 and 1·2 cwt/acre N and between 17000 and 32000 plants/acre gave largest sugar yield. Giving more nitrogen or increasing the plant population neither increased nor decreased sugar yield much in any year. Irrigation was beneficial in only two out of five years.Sugar yield was linearly related to root dry-matter yield. Although total dry matter was greatest when the largest plant population was given the largest dressing of nitrogen and irrigation, the proportion of dry matter in the roots was decreased by all three factors.


2017 ◽  
pp. 162-167
Author(s):  
Klaus Bürcky ◽  
Thomas Hetterich ◽  
Johannes Heyn ◽  
Dietmar Horn ◽  
Dierk Koch

The yield of sugar beet has increased significantly in the last 20 years, as data on beet yields from Südzucker AG show. This led to the question of how the increased yield influenced the nutrient uptake of root and top. Therefore, beet and top were harvested in field trials set up to optimize the fertilization of sugar beet and, in addition to the yields, the concentrations of macronutrients and micronutrients in root and top were measured. A total of 114 environments were used for these studies and current data for nutrient uptake and nutrient export from sugar beet were determined. Root yields ranged from 65 to 115tha–1 and the top yields from 13 to 72tha–1. This corresponded to a dry matter yield of 14 to 26tha–1 for roots and to as little as 3.0 to 9.6tha–1 for tops. However, since the nutrient content in the roots was significantly lower than in the tops, less than 50% of the total uptake was found in the roots at harvesting time: N (49%), Mg (44%), K (36 %), Ca (34%), S (32%) and Na (12%). Among the macronutrients, it was only phosphorous which showed with 60% a higher amount of the nutrients in the roots than in the tops (about 40%). The results provide valuable information for a review and adaptation of current nutrient tables,the nutrient balance and, ultimately, fertilizer assessment.


1983 ◽  
Vol 101 (1) ◽  
pp. 185-205 ◽  
Author(s):  
P. J. Last ◽  
A. P. Draycott ◽  
A. B. Messem ◽  
D. J. Webb

SUMMARYDuring 1973–8 six field experiments examined the effect of 0, 41, 82, 124, 166 and 207 kg N/ha with and without irrigation on the growth, yield and quality of sugar beet. The culture of the crops was planned to produce a large yield in order to determine the optimal nitrogen application for the above-average crops which many growers are now seeking to produce. Ammonium nitrate was used as the nitrogen source, broadcast in one dose before sowing as was recommended practice in the early 1970s. The growth of the crop was monitored from the seedling stage to harvest in December, as was nitrogen uptake by the crop, and water removal from the soil using a neutron probe.In 3 years when the weather was dry after drilling, the fertilizer significantly depressed the number of plants which established but plant weights showed that some nitrogen fertilizer was needed early for rapid seedling growth. Changes in the method of applying fertilizer for sugar beet are therefore suggested and are being tested. Soil analyses in the plough layer during establishment (May–June) indicated an optimum concentration of mineral nitrogen of about 40 mg N/kg soil at this stage.Nitrogen fertilizer was very important for a high yield; throughout the growth of the crop it greatly increased total dry-matter yield and at final harvest this was reflected in sugar yield. Considering the six years together, sugar yield was linearly related to both dry-matter yield and total nitrogen uptake. However, within a year, increasing nitrogen uptake above 200 kg N/ha with nitrogen fertilizer did not increase sugar yield; maximum yields of sugar each year were normally obtained with 125 kg N/ha fertilizer or less, and irrigation had little effect on the optimum amount. Explanations for the lack of responsiveness of sugar beet to greater applications of nitrogen fertilizer are being sought in further more detailed analyses of the crop and its environment.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 481a-481 ◽  
Author(s):  
M. Rangappa ◽  
H.L. Bhardwaj

Sweet basil (Ocimum basilicum) is an important culinary herb in Virginia and other areas. The objective of this study, conducted during 1997, was to determine optimal N rate for fresh and dry matter yield. Seed of Broad Leaf sweet basil were direct-seeded on 18 June in rows 0.75 m apart in a RCBD design with 8 replications. Four N rates (0, 25, 50, and 75 kg N/ha) were used. Calcium nitrate (15.5% N) was used as the fertilizer source. All plants from 1-m row length from middle row of each plot were harvested by hand on 23 Sept. and fresh weights were recorded. The plant material was dried at 70°C for 48 h to record dry weights. The moisture content at harvest was calculated from fresh and dry weights. The fresh yields following 0, 25, 50, and 75 kg N/ha were 3.7, 5.4, 6.4, and 6.8 kg/m2, respectively. The yield difference between two highest N rates was not significant, however, both these rates had significantly higher yield than the two lowest rates. Similar results were also obtained for dry matter yields. The highest N rate of 75 kg N/ha resulted in significantly higher dry matter yield (1.3 kg/m2) as compared to the other three rates. The lowest dry matter yield was obtained after the control treatment (0.6 kg/m2). An opposite relationship between N rate and moisture content was observed when the highest moisture content resulted from control and 50 kg N/ha treatments. These results indicate that optimum N rate for sweet basil in Virginia is 50 to 75 kg/ha.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Peter Asbon Opala

The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1) was obtained with a combined 2 t ha−1of lime with 30 kg P ha−1suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Sebastian Kiewnick ◽  
Barry J. Jacobsen ◽  
Andrea Braun-Kiewnick ◽  
Joyce L. A. Eckhoff ◽  
Jerry W. Bergman

Rhizoctonia crown and root rot, caused by the fungus Rhizoctonia solani AG 2-2, is one of the most damaging sugar beet diseases worldwide and causes significant economic losses in more than 25% of the sugar beet production area in the United States. We report on field trials in the years 1996 to 1999 testing both experimental fungicides and antagonistic Bacillus sp. for their potential to reduce disease severity and increase sugar yield in trials inoculated with R. solani AG 2-2. Fungicides were applied as in-furrow sprays at planting or as band sprays directed at the crown at the four-leaf stage, or four- plus eight-leaf stage, while bacteria were applied at the four-leaf stage only. The fungicides azoxystrobin and tebuconazole reduced crown and root rot disease by 50 to 90% over 3 years when used at rates of 76 to 304 g a.i./ha and 250 g a.i./ha, respectively. The disease index at harvest was reduced and the root and sugar yield increased with azoxystrobin compared with tebuconazole. The combination of azoxystrobin applied at 76 g a.i./ha and the Bacillus isolate MSU-127 resulted in best disease reduction and greatest root and sucrose yield increase.


2016 ◽  
Vol 29 (1) ◽  
pp. 133-142
Author(s):  
NÍDIA RAQUEL COSTA ◽  
MARCELO ANDREOTTI ◽  
KENY SAMEJIMA MASCARENHAS LOPES ◽  
KAZUO LEONARDO ALMEIDA YOKOBATAKE ◽  
CÉSAR GUSTAVO DA ROCHA LIMA

ABSTRACT: An experiment was conducted during the years 2009 and 2010 to evaluate the effects of Urochloa forage straw and nitrogen fertilization on soil properties, nutritional foliar content, index of foliar chlorophyll (IFC) values, production components, and grains yields of winter bean (Phaseolus vulgaris 'Pérola') in the Cerrado lowlands region of Brazil. The treatments consisted of planting bean crops under straw of Urochloa brizantha 'Xaraés' and Urochloa ruziziensis, fertilized with urea-sourced N (0, 50, 100, 150, and 200 kg N ha-1). The experimental design was randomized blocks with four replications, and a factorial scheme of 2 × 5. The greater yield of U. brizantha dry matter in the two years of evaluation increased bean leaf nutrient levels. The nutritional increase with increasing N application rates showed that the straw produced by the forages had a positive effect on bean nutrition. The grain yield was satisfactory but was not affected by the forage species nor by changes in the N application rates. The Urochloa straw increased the soil organic matter (SOM), Ca, and Mg content in both evaluated years, affected the decomposition and mineralization of organic residues, and ensured the proper development of the bean plants.


Sign in / Sign up

Export Citation Format

Share Document