scholarly journals WINTER BEAN PRODUCTIVITY UNDER UROCHLOA STRAW FERTILIZED WITH NITROGEN

2016 ◽  
Vol 29 (1) ◽  
pp. 133-142
Author(s):  
NÍDIA RAQUEL COSTA ◽  
MARCELO ANDREOTTI ◽  
KENY SAMEJIMA MASCARENHAS LOPES ◽  
KAZUO LEONARDO ALMEIDA YOKOBATAKE ◽  
CÉSAR GUSTAVO DA ROCHA LIMA

ABSTRACT: An experiment was conducted during the years 2009 and 2010 to evaluate the effects of Urochloa forage straw and nitrogen fertilization on soil properties, nutritional foliar content, index of foliar chlorophyll (IFC) values, production components, and grains yields of winter bean (Phaseolus vulgaris 'Pérola') in the Cerrado lowlands region of Brazil. The treatments consisted of planting bean crops under straw of Urochloa brizantha 'Xaraés' and Urochloa ruziziensis, fertilized with urea-sourced N (0, 50, 100, 150, and 200 kg N ha-1). The experimental design was randomized blocks with four replications, and a factorial scheme of 2 × 5. The greater yield of U. brizantha dry matter in the two years of evaluation increased bean leaf nutrient levels. The nutritional increase with increasing N application rates showed that the straw produced by the forages had a positive effect on bean nutrition. The grain yield was satisfactory but was not affected by the forage species nor by changes in the N application rates. The Urochloa straw increased the soil organic matter (SOM), Ca, and Mg content in both evaluated years, affected the decomposition and mineralization of organic residues, and ensured the proper development of the bean plants.

2014 ◽  
pp. 169-176 ◽  
Author(s):  
Philipp Starke ◽  
Christa Hoffmann

High biogas yields are expected from sugar beet because of its high root yield. But it has not been analysed yet, which varieties are best suited to reach the highest biogas yield. The study thus aimed at identifying a parameter to estimate the biogas yield of sugar beet. To get a broad variation of yields and beet qualities, field trials were conducted from 2008 to 2011 at 2 sites (Göttingen and Regensburg, Germany) with different sugar beet varieties and fodder beet. Different N application rates were included and furthermore, autumn sown beets (winter beet). Dry matter composition was analyzed, biogas yield and methane concentration were determined in batch experiments. Sugar beet reached root dry matter yields of more than 20tha–1 and thereby exceeded fodder beet. Moderate N application increased root dry matter yield, whereas higher N rates only enhanced the leaf dry matter yield. But most likely, leaves will not be considered for fermentation because of their low concentration of dry matter and organic dry matter. Winter beet reached total dry matter yields of 12tha–1, but dry matter was not as easily digestible as that of spring sown beets. Biogas yield showed a close linear relation to the root dry matter and the sugar yield as well. Sugar beet varieties can therefore be assessed for anaerobic digestion by their sugar yield. As sugar yield is already the main target, breeding for biogas beets will not be substantially different from that for beets used for sugar manufacture.


2005 ◽  
Vol 85 (2) ◽  
pp. 361-368 ◽  
Author(s):  
S. K. Dong ◽  
Z. F. Yang ◽  
R. J. Long ◽  
Z. Z. Hu ◽  
M. Y. Kang

A study was conducted on grass mixtures that included smooth bromegrass (SB) + drooping wild ryegrass (DW), smooth bromegrass + Siberian wild ryegrass (SW) + crested wheatgrass (CW) and smooth bromegrass + Siberian wild ryegrass + drooping wild ryegrass + crested wheatgrass in the alpine region of Qinghai-Tibetan Plateau. The study was conducted from 1998 to 2000 to investigate the effects of N application rates and growing year on herbage dry matter (DM) yield and nutritive values. Herbage DM production increased linearly with N application rates. The effect of N application on DM yields was greater (P < 0.05) in the 2nd and 3rd production years than in the establishment year. Dry matter yields of SB + SW + CW and SB + SW + DW + CW can reach as high as 15 000 kg ha-1 at 345 kg ha-1 N rate in the 3rd growing year. With increased N application rates, crude protein (CP) contents and 48 h in sacco DM degradability of grasses increased (P < 0.05). No effect (P > 0.05) of N application was detected on organic matter (OM) and acid detergent fibre (ADF) concentration. It can be concluded that for increased biomass production in the alpine region of the Qinghai-Tibetan Plateau, a minimum of 345 kg N ha-1 should be applied to grass stands in three split application of 115 kg N ha-1, in early June, early July and late July. Key words: Nitrogen levels, herbage dry matter yield, leaf shoot ratio, crude protein contents, dry matter degradability


Irriga ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 289-302
Author(s):  
Jhésmila Indridy Bueno ◽  
Giuliani Do Prado ◽  
Adriano Catossi Tinos ◽  
Rafael Rech Bruscagin ◽  
Gessyka Roberti Volpato

Produção sazonal de duas espécies FORRAGEIRAS irrigadAS     Jhésmila Ingridy Bueno1; Giuliani do Prado1; Adriano Catossi Tinos1; Rafael Rech Bruscagin1 e Gessyka Roberti Volpato1   1Departamento de Engenharia Agrícola - DEA, Universidade Estadual de Maringá - UEM, Rodovia PR 482, km 45, CEP: 87.820-000, Cidade Gaúcha-PR, Brasil. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected].     1 RESUMO   Esse trabalho objetivou avaliar o efeito da irrigação sobre a produção de dois capins, em diferentes épocas do ano. O experimento foi conduzido entre maio de 2014 e junho de 2015, na Universidade Estadual de Maringá, em Cidade Gaúcha-PR. O delineamento experimental foi em faixas com parcelas subdividas, quatro repetições e três fatores: i) espécies forrageiras (Megathyrsus maximus cv. Mombaça e Urochloa brizantha cv. BRS Piatã); ii) irrigação (irrigado e não irrigado); iii) épocas de corte (oito cortes). As lâminas de irrigação foram determinadas para reposição da evapotranspiração de referência (ET0), estimada pela equação de Penman-Monteith. Os resultados obtidos mostraram que: i) a produtividade das duas forrageiras não apresentou diferenças significativas; ii) a época de corte teve efeito significativo sobre a produção das forrageiras sob irrigação e o cultivo irrigado foi superior ao de sequeiro do primeiro ao quarto corte; iii) as maiores produtividades de matéria seca ocorreram nos meses de maiores temperaturas e radiação solar (novembro a janeiro). Para diferentes épocas do ano, a produção de massa seca pode ser estimada a partir de equações de regressão em função da temperatura e da radiação solar, para o cultivo irrigado (R2 = 73,5%) e de sequeiro (R2 = 91,9%).   Palavras-chave: irrigação de pastagem, forrageiras tropicais, temperatura, radiação solar.     Bueno, J. I.; Prado, G.; Tinos, A. C.; Bruscagin, R. R.; Volpato, G. R. Seasonal production of two irrigated FORAGE species     2 ABSTRACT   This paper aimed to evaluate the irrigation effect under pasture production of Mombaça and Piatã grasses in different year seasons. The experiment was carried out from May 2014 to June 2015, at Universidade Estadual de Maringá, at Cidade Gaúcha-PR. The experiment was set up in strip-plot design, four replications and three factors: i) forage species (Megathyrsus maximus cv. ‘Mombaça’ and Urochloa brizantha cv. ‘BRS Piatã’); ii) irrigation (irrigated and non-irrigated); iii) cutting cycles (eight cuts). Irrigation water depths were calculated forreplacement of reference evapotranspiration (ET0), estimated with Penman-Monteith equation. The results showed that: i) there were no significant differences across the forage species yield; ii) the forage dry matter yield under irrigation was dependent on the harvest season, and the irrigated forages had yields higher than those of  non-irrigated forages from the first to fourth cutting cycle; iii) the highest dry matter yields occurred in months with higher values of temperature and solar radiation (November to January). The forage yields depended on the year season, and the forage dry matter yields can be estimated from regression equations as a function of temperature and solar radiation, for irrigated (R2 = 73.5%) and non-irrigated (R2 = 91.9%) pasture.   Keywords: pasture irrigation, tropical forage crops, temperature, solar radiation.


2016 ◽  
Vol 46 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Miguel Henrique Rosa Franco ◽  
Vinícius Teixeira Lemos ◽  
André Cabral França ◽  
Nykolas Carvalho Schiavon ◽  
Marco Túlio Gomes Albuquerque ◽  
...  

ABSTRACT The long lasting residual effect of some auxin herbicides depends on soil characteristics and may cause phytotoxicity on subsequent crops. Picloram is one of the main herbicides used in pastures, presenting a long lasting residual effect in the soil. This study aimed at determining the physiological and morphological characteristics of common bean plants grown in soil contaminated with picloram, under greenhouse conditions. A complete randomized blocks design, with treatments consisting of picloram doses (0 g ha-1, 7.5 g ha-1, 15 g ha-1, 30 g ha-1, 60 g ha-1 and 120 g ha-1 a.i.), with five replications, was used. Urochloa brizantha was sown in pots, and its height and shoot fresh and dry matter were evaluated. In the same pots, Phaseolus vulgaris was sown as a bio-indicator of picloram, and the following characteristics were measured: plant height, fresh and dry matter, phytotoxicity, leaf area, number of leaves per plant, maximum photosynthetic efficiency and relative electron transport rate. The phytoremediation process occurs in soil with picloram residues (up to 30 g ha-1) when covered by U. brizantha for 150 days. The common bean plants show a good potential as biological indicator of the presence of picloram residues in the soil.


1974 ◽  
Vol 14 (66) ◽  
pp. 38 ◽  
Author(s):  
DL Lloyd

Makarikari grass (Panicum coloratum var. makarikariense) cvs, 04634 and Bambatsi were fertilized with eight rates of urea (0-900 kg N ha-1 yr-1) under irrigation on a red earth at Toowoomba, and cut either 8-weekly or at full flower. Dry matter (D.M.) production increased linearly with N applications up to 450 kg ha-1 for both cultivars. Due to differences in growth rhythm between cultivars, 04634 produced higher total yields cut at full flower (29500 kg ha-1 yr-1) than at 8-weekly intervals (23100 kg ha-1 yr-1), whereas Bambatsi yielded similarly (23000 kg ha-1 yr-1) for the two cutting frequencies. Lower tissue N concentrations occurred at full flower than in 8-week growth for both cultivars (Q4634 -0.85 per cent to 1.08 per cent; Bambatsi-1.39 per cent to 1.55 per cent at 450 kg N ha-1). The N uptake by 04634 was the same for both cutting frequencies, but lower in Bambatsi cut at full flower. The association between N application rate, tissue N concentration and N uptake is outlined. The maximum efficiencies of both N use for D.M. production and per cent N recovery for 04634 and Bambatsi (55 and 35 kg D.M. per kg N applied; 40 and 60 per cent N recovery, respectively) were comparable with published values for other species. Increasing N application rates decreased the efficiency of D.M. production of both cultivars, decreased the per cent N recovery of Bambatsi, but had no effect on the per cent N recovery of 04634. In an extension of the Bambatsi study, the intrusion of spring ephemerals, mainly Bromus unioloides, did not reduce total D.M. production greatly and distributed it better through the growing season. Productivity of Bambatsi during mid-summer was not affected by prior weed competition in the spring.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Peter Asbon Opala

The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1) was obtained with a combined 2 t ha−1of lime with 30 kg P ha−1suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.


1979 ◽  
Vol 93 (1) ◽  
pp. 115-120 ◽  
Author(s):  
A. A. Parsa ◽  
A. Wallace ◽  
J. P. Martin

SUMMARYIn a preliminary laboratory experiment in Iran, not reported here, 5 out of 30 plant materials incorporated into a highly calcareous soil had a positive effect on increasing the DTPA- (diethylenetriaminepentaacetic acid)-extractable Fe and all except one significantly increased the vegetative growth of sorghum. The plant materials included Lawsonia inermis L., Malva silvestris L., Zyzyphus nummularia Wak. and Lavandula carnopifolia L. A glasshouse study was repeated with two California soils pretreated with 0·5% Fe2O3 to determine if these organic materials have practical value in making Fe available to plants. A calcareous, Fe-deficient Hacienda (fine-loamy, mixed, thermic aquic natrargid) and a non-calcareous Yolo (fine-silty, mixed, non-acid, thermic typic xerothents). The previously mentioned organic materials and Laminaria saccharina L. (Lamour) were incorporated into the soils at two rates, 15000 and 20000μg/g, as air dry and in ash form. An adequate supply of major and micronutrients other than Fe was ensured. Other treatments included 5 μg Fe/g as FeSO4, Fe-138 chelate and control. All of the plant materials with the exception of L. carnopifolia significantly increased dry-matter yield and Fe, Zn, Cu and Mn uptake by sorghum in the Hacienda soil. In the Yolo soil the above were not significant. Thin-layer chromatography of the extracts of the plant materials revealed the presence of significant quantities of phenolic substances.


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


Sign in / Sign up

Export Citation Format

Share Document