Formation conditions of an ice storm in Vladivostok in November 2020

2021 ◽  
Vol 4 ◽  
pp. 69-83
Author(s):  
I.I. Leonov ◽  
◽  
N.N. Sokolikhina ◽  

Synoptic conditions for the formation of an unprecedented ice storm with the generation of long-lived high-intensity glaze ice on the vast territory in Primorsky Krai are investigated. The leading role of the strong extension of the layer with positive temperature towards the cold air mass and the existence of two-way temperature advection in the lower troposphere are shown. It is shown that the long-term preservation of glaze ice on the territory of the region was associated with the movement of the southern cyclone to the east and the arrival of cold air masses from the continent. Experiments were implemented to simulate freezing precipitation using the WRF-ARW mesoscale model. The simulation results made it possible to obtain more detailed data on the vertical structure of the atmosphere during the formation of freezing precipitation and to fill in the missing data for analysis. Keywords: severe weather events, ice accretion, glaze ice, freezing rain, ice pellets, numerical weather prediction, WRF-ARW

2020 ◽  
Author(s):  
Marvin Kähnert ◽  
Teresa M. Valkonen ◽  
Harald Sodemann

<p>Numerical weather prediction (NWP) models generally display comparatively low predictive skill in the Arctic. Particularly, the large impact of sub-grid scale, parameterised processes, such as surface fluxes, radiation or cloud microphysics during high-latitude weather events pose a substantial challenge for numerical modelling. Such processes are most influential during mesoscale weather events, such as polar lows, often embedded in cold air outbreaks (CAO), some of which cause high impact weather. Uncertainty in Arctic weather forecasts is thus critically dependent on parameterised processes. The strong influence from several parameterised processes also makes model forecasts particularly susceptible to compensation of errors from different parameterisations, which potentially limits model improvement.<br>Here we analyse model output of individual parameterised tendencies of wind, temperature and humidity during Arctic high-impact weather in AROME-Arctic, the operational NWP model used by the Norwegian Meteorological Institute Norway for the European Arctic. Individual tendencies describe the contribution of each applied physical parameterisation to a respective variable per model time step. We study a CAO-event taking place during 24 - 27 December 2015. This intense and widespread CAO event, reaching from the Fram Straight to Norway and affecting a particularly large portion of the Nordic seas at a time, was characterised by strong heat fluxes along the sea ice edge. <br>Model intern definitions for boundary layer type become apparent as a decisive factor in tendency contributions. Especially the interplay between the dual mass flux and the turbulence scheme is of essence here. Furthermore, sensitivity experiments, featuring a run without shallow convection and a run with a new statistical cloud scheme, show how a physically similar result is obtained by substantially different tendencies in the model.</p>


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2014 ◽  
Vol 7 (12) ◽  
pp. 12719-12733 ◽  
Author(s):  
F. Zus ◽  
G. Beyerle ◽  
S. Heise ◽  
T. Schmidt ◽  
J. Wickert

Abstract. The Global Positioning System (GPS) radio occultation (RO) technique provides valuable input for numerical weather prediction and is considered as a data source for climate related research. Numerous studies outline the high precision and accuracy of RO atmospheric soundings in the upper troposphere and lower stratosphere. In this altitude region (8–25 km) RO atmospheric soundings are considered to be free of any systematic error. In the tropical (30° S–30° N) Lower (<8 km) Troposphere (LT), this is not the case; systematic differences with respect to independent data sources exist and are still not completely understood. To date only little attention has been paid to the Open Loop (OL) Doppler model. Here we report on a RO experiment carried out on-board of the twin satellite configuration TerraSAR-X and TanDEM-X which possibly explains to some extent biases in the tropical LT. In two sessions we altered the OL Doppler model aboard TanDEM-X by not more than ±5 Hz with respect to TerraSAR-X and compare collocated atmospheric refractivity profiles. We find a systematic difference in the retrieved refractivity. The bias mainly stems from the tropical LT; there the bias reaches up to ±1%. Hence, we conclude that the negative bias (several Hz) of the OL Doppler model aboard TerraSAR-X introduces a negative bias (in addition to the negative bias which is primarily caused by critical refraction) in our retrieved refractivity in the tropical LT.


2005 ◽  
Vol 133 (11) ◽  
pp. 3148-3175 ◽  
Author(s):  
Daryl T. Kleist ◽  
Michael C. Morgan

Abstract The 24–25 January 2000 eastern United States snowstorm was noteworthy as operational numerical weather prediction (NWP) guidance was poor for lead times as short as 36 h. Despite improvements in the forecast of the surface cyclone position and intensity at 1200 UTC 25 January 2000 with decreasing lead time, NWP guidance placed the westward extent of the midtropospheric, frontogenetically forced precipitation shield too far to the east. To assess the influence of initial condition uncertainties on the forecast of this event, an adjoint model is used to evaluate forecast sensitivities for 36- and 48-h forecasts valid at 1200 UTC 25 January 2000 using as response functions the energy-weighted forecast error, lower-tropospheric circulation about a box surrounding the surface cyclone, 750-hPa frontogenesis, and vertical motion. The sensitivities with respect to the initial conditions for these response functions are in general very similar: geographically isolated, maximized in the middle and lower troposphere, and possessing an upshear vertical tilt. The sensitivities are maximized in a region of enhanced low-level baroclinicity in the vicinity of the surface cyclone’s precursor upper trough. However, differences in the phase and structure of the gradients for the four response functions are evident, which suggests that perturbations could be constructed to alter one response function but not necessarily the others. Gradients of the forecast error response function with respect to the initial conditions are used in an iterative procedure to construct initial condition perturbations that reduce the forecast error. These initial condition perturbations were small in terms of both spatial scale and magnitude. Those initial condition perturbations that were confined primarily to the midtroposphere grew rapidly into much larger amplitude upper-and-lower tropospheric perturbations. The perturbed forecasts were not only characterized by reduced final time forecast error, but also had a synoptic evolution that more closely followed analyses and observations.


2017 ◽  
Vol 10 (5) ◽  
pp. 1813-1821
Author(s):  
Pengfei Xia ◽  
Shirong Ye ◽  
Kecai Jiang ◽  
Dezhong Chen

Abstract. In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity, which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-difference or single-difference techniques. These two techniques, however, rely on the reference data in the data processing, increasing the complexity of computation. In this study, an undifferenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we use PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the purpose of acquiring the position and velocity of the mass centre of the COSMIC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellites and the corresponding receiver clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP using Radio Occultation Processing Package (ROPP) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Results indicate that rms (root mean square) errors of relative refractivity differences between undifferenced and atmospheric profiles (atmPrf) provided by UCAR/CDAAC (University Corporation for Atmospheric Research/COSMIC Data Analysis and Archive Centre) are better than 4 and 3 % in rising and setting occultation events respectively. In addition, we also compare the relative refractivity bias between ND-derived methods and atmPrf profiles of globally distributed 200 COSMIC occultation events on 12 December 2013. The statistical results indicate that the average rms relative refractivity deviation between ND-derived and COSMIC profiles is better than 2 % in the rising occultation event and better than 1.7 % in the setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data, and the results indicate that the undifferenced method reduces the noise level on the excess phase paths in the lower troposphere compared to the single-difference processing strategy.


2015 ◽  
Vol 15 (11) ◽  
pp. 6007-6021 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.


2017 ◽  
Vol 14 ◽  
pp. 187-194 ◽  
Author(s):  
Stefano Federico ◽  
Marco Petracca ◽  
Giulia Panegrossi ◽  
Claudio Transerici ◽  
Stefano Dietrich

Abstract. This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (> 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day−1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1–2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.


2007 ◽  
Vol 7 (6) ◽  
pp. 15911-15954 ◽  
Author(s):  
M. Tressol ◽  
C. Ordonez ◽  
R. Zbinden ◽  
V. Thouret ◽  
C. Mari ◽  
...  

Abstract. This study presents an analysis of both MOZAIC profiles above Frankfurt and Lagrangian dispersion model simulations for the 2003 European heat wave. The comparison of MOZAIC measurements in summer 2003 with the 11-year MOZAIC climatology reflects strong temperature anomalies (exceeding 4°C) throughout the lower troposphere. Higher positive anomalies of temperature and negative anomalies of both wind speed and relative humidity are found for the period defined here as the heat wave (2–14 August 2003), compared to the periods before (16–31 July 2003) and after (16–31 August 2003) the heat wave. In addition, Lagrangian model simulations in backward mode indicate the suppressed long-range transport in the mid- to lower troposphere and the enhanced southern origin of air masses for all tropospheric levels during the heat wave. Ozone and carbon monoxide also present strong anomalies (both ~ +40 ppbv) during the heat wave, with a maximum vertical extension reaching 6 km altitude around 11 August 2003. Pollution in the planetary boundary layer (PBL) is enhanced during the day, with ozone mixing ratios two times higher than climatological values. This is due to a combination of factors, such as high temperature and radiation, stagnation of air masses and weak dry deposition, which favour the accumulation of ozone precursors and the build-up of ozone. A negligible role of a stratospheric-origin ozone tracer has been found for the lower troposphere in this study. From 29 July to 15 August 2003 forest fires burned around 0.3×106 ha) in Portugal and added to atmospheric pollution in Europe. Layers with enhanced CO and NOy mixing ratios, probably advected from Portugal, were crossed by the MOZAIC aircraft in the free troposphere over Frankfurt. A series of forward and backward Lagrangian model simulations have been performed to investigate the origin of these anomalies. During the whole heat wave, European anthropogenic emissions present the strongest contribution to the measured CO levels in the lower troposphere (near 30%). This source is followed by Portuguese forest fires which affect the lower troposphere after 6 August 2003 and even the PBL around 10 August 2003. The averaged biomass burning contribution reaches 35% during the affected period. Anthropogenic CO of North American origin only marginally influences CO levels over Europe during that period.


Author(s):  
H. M. Park ◽  
M. A. Kim ◽  
J. Im

Severe weathers such as heavy rainfall, floods, strong wind, and lightning are closely related with the strong convection activities of atmosphere. Overshooting tops sometimes occur by deep convection above tropopause, penetrating into the lower stratosphere. Due to its high potential energy, the detection of OT is crucial to understand the climatic phenomena. Satellite images are useful to detect the dynamics of atmospheric conditions using cloud observation. This study used machine learning methods for extracting OTs. The reference cases were built using CloudSat, CALIPSO, and Numerical Weather Prediction (NWP) data with Himawari-8 imagery. As reference cases, 11 OT events were detected. The aim of this study is the investigation of relationship between OTs cases and the occurrences of heavy rainfall. For investigation of OT effects, TRMM daily rain rate data (mm/hr) were collected and averaged at 25 km intervals until 250km from the center of OT cases. As the result, precipitation rate clearly coincides with the distance from the center of OT occurrence.


Sign in / Sign up

Export Citation Format

Share Document