Experimental Investigation on Bond Strength of Concrete and Steel Bar of Conventional Concrete at Elevated Temperatures

2020 ◽  
Vol 24 (5) ◽  
pp. 2997-3007
Author(s):  
Premkumar G.
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 140
Author(s):  
Paraskevi D. Askouni ◽  
Catherine (Corina) G. Papanicolaou ◽  
Lazar Azdejkovic

Limited research has focused on the effect of high temperatures on the textile-reinforced mortar (TRM)-to-masonry bond. In this study, masonry prisms that were furnished with double-layered TRM strips were tested under shear bond conditions after their exposure to 200 °C and 400 °C for 1 h using the single-lap/single-prism setup. A total of four TRM systems were applied sharing the same type of textile –a dry AR glass fiber one– and different matrices: two cementitious matrices, namely a normal-weight (TRCNM) and a lightweight (TRCLM) one, and two counterpart alkali-activated matrices (TRAANM and TRAALM) based on metakaolin and fly ash. Specimens’ exposure to elevated temperatures did not alter their failure mode which was due to the sleeve fibers’ rupture along with core fibers’ slippage from the mortar. The residual bond capacity of the TRM systems decreases almost linearly with increasing exposure temperature. The alkali-activated textile reinforced mortars outperformed their cement-based counterparts in terms of bond strength at every temperature. All systems retained close to 50% of their original shear bond strength after heating at 400 °C. Per the type of binder, lightweight matrices resulted in either comparable (cement-based systems) or better (alkali-activated systems) heat protection at the TRM/masonry interface.


2019 ◽  
Vol 972 ◽  
pp. 26-33
Author(s):  
Muhammad Harunur Rashid ◽  
Md. Maruf Molla ◽  
Imam Muhammad Taki

In the case of exposure of reinforced concrete structure to accidental fire, an assessment of its residual capacity is needed. Bond strength of concrete was observed under elevated temperatures (150°, 250°, 350° and 500°C) in this study. Cylindrical specimens were prepared for pull-out tests to find out the bond behavior and to observe the mechanical properties of concrete. All the specimens were 100 mm diameter and 200 mm height. The pull-out specimens contain a 10 mm steel bar at its center. The specimens were tested at 52 days age following a 28 days water curing. Samples were preheated for 3 hours at 100°C temperature and then put into the furnace for 1 hour at the target temperature. Samples were tested before preheating as controlled specimens. In case of mechanical properties and the bond strength of concrete, there were no remarkable changes due to elevated temperature up to 150°C. However, the mechanical properties and bond strength were decreased gradually after 150°C temperature. Maximum reduction of bond strength observed was 52.13% and 49.8% at 500°C for testing within 1 hour and after 24 hours of heating respectively when compared to the controlled specimens. Bond strength was found to reduce at a greater rate than compressive strength due to the elevated temperature.


2021 ◽  
Vol 889 (1) ◽  
pp. 012080
Author(s):  
Priyanka Singh ◽  
Payel Bera ◽  
Saurav Bhardwaj ◽  
S K Singh

Abstract The bond strength of grip b/w steel and concrete can be defined as the resistant to separating concrete or mortar from the reinforced bar. This bond strength is the most critical characteristic of reinforced-cement concrete. Structural performance depends upon this characteristic, especially in the failure phase. Bond strength is primarily dependable on many variables that affect this attribute. These variables include the diameter of the reinforced steel bar, bond extent, length to diameter ratio, cube compressive strength, concrete cover, cover to dimeter ratio, volume fraction and most importantly, different temperatures. Up to 150°C, there is no such change in bond strength of reinforcement concrete, but when the temperature rises beyond 150°C, it starts to decreasegradually. We have collected experimental data from the internationally published record. This study will see the change in bond strength at these temperature variations i.e., 200°C, 400°C, and 600°C. This observational study will represent a soft computing tool, i.e., an Artificial Neural network (ANN), to predict and measure the grip strength between concrete and steel bar at elevated temperatures. The bond strength of reinforced concrete has been predicted by using ANN Models. Data set based upon the different factor that affects the bond strength has been used as input for generating ANN model & ultimate bond strength of reinforced concrete has been used as output during the development of the ANN model. This model was then prepared to predict bond strength and affected by many input features and recorded a linear regression analysis. The predicted result then confirmed the accuracy and high estimation capability of the model.


2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


2021 ◽  
Author(s):  
Aamer Abbas ◽  
◽  
Yaqoob Yaqoob ◽  
Ola Hussein ◽  
Ibrahim Al-Ani ◽  
...  

This study presents experimentally the bond behavior of light-weight concrete specimens with grouted reinforcing bars in comparison with conventional concrete specimens. A total of (9) pull-out specimens were studied; (3) specimens of conventional concrete, (3) specimens of light-weight concrete, and other (3) specimens of grouted light-weight concrete. Two variables are adopted in this investigation: specimen width and type of concrete (conventional concrete, light-weight concrete and grouted light-weight concrete). The study contains a discussion of the general behavior of the specimens in addition to the study of the ultimate bond capacity, maximum bond stresses and the relationship between the stress and the slip for different pull-out specimens. Results show that bond strength is highest for the largest specimen size (bond strength of grouted light-weight concrete specimen with specimen width 400 mm is higher than that of the specimen with (200 mm) width by about (13.13%)). Also, bond strength is highest for the grouted light-weight concrete specimen (bond strength of grouted light-weight concrete specimen is higher than conventional concrete specimen by (11.11%)).


Sign in / Sign up

Export Citation Format

Share Document