Complexity of soil type in Sangong River Basin of Xinjiang, China

2010 ◽  
Vol 18 (6) ◽  
pp. 1330-1334
Author(s):  
Pu-Jia YU ◽  
Hai-Liang XU ◽  
Qing-Qing ZHANG ◽  
Shi-Wei LIU ◽  
Cai-Xia ZHOU ◽  
...  
Keyword(s):  
Author(s):  
Pujia Yu ◽  
Hailiang Xu ◽  
Shiwei Liu ◽  
Xinfeng Zhao ◽  
Qingqing Zhang ◽  
...  

During the past 20 years, great landscape changes took place in the northwest of China. Landscape change resulted in soil type transformations. This paper discusses the changes and fractal of soil types in oasis. In order to do it, the soil type maps of Manasi River Basin in 1987 and 2006 were used. 13 types of soil and 2 types of land-use were classified and analyzed in the study area. Results indicated many variations in characteristics. Firstly, all soil types underwent remarkable changes from 1987 to 2006 in the study area: the identified changed area was about 30% or 6506.33 km2. Secondly, in comparison with 1987, in 2006 2/3 of the area's soil types increased, while 1/3 decreased. Rapid expansion of Aquicambids (415.28 km2), and rapid decrease of Petrocambids (797.05 km2) and Aquisalids (415.93 km2) were the noticeable findings. Furthermore, Haplocambids obtained largest gains from other soil types, while Petrocambids lost largest area to other types. Additionally, the fractal relationship objectively existed between the perimeter and area of soil patches. The fractal dimension of Aquisalids, Petrocalcids and Ustifluvents became higher and their shapes became more complex during this period. The stability index was higher in 2006 which indicated that the spatial structure of soil type was more stable than in 1987. These chaotic and occasional changes were largely caused by human activities and natural conditions. Consequently, environmental managers should pay more attention to soil changes in the arid and semiarid region. Santrauka Per pastaruosius 20 metų šiaurės vakarų Kinijoje įvyko didelių kraštovaizdžio pokyčių, lėmusių ir dirvožemio tipų pakitimus. Remiantis 1987–2006 m. Manasi upės baseino dirvožemio žemėlapiais, aptariami dirvožemio tipų pokyčiai ir fraktalai oazėse. Pasirinktoje teritorijoje išskirta ir analizuota 13 dirvožemio tipų ir dvejopa žemėnauda. Nustatyta daug kintamųjų parametrų. Pirma, tirtõs teritorijos visų tipų dirvožemiai nuo 1987 iki 2006 m. žymiai pakito. Nustatytoji pokyčių zona apima apie 30 % teritorijos, arba 6 506,32 km2. Antra, palyginti su 1987 m., 2006 m. 10 dirvožemio tipų teritorija padidėjo, o 5 tipų sumažėjo. Sparčiai padidėjo Aquicambids (415,28 km2), sparčiai sumažėjo Petrocambids (797,05 km2) ir Aquisalids (415,93 km2), pokyčiai buvo žymūs. Iš visų kitų pakitusių dirvožemių tipų Haplocambids plotai padidėjo daugiausia, o labiausiai, palyginti su kitais, sumažėjo Petrocambids plotai. Be to, pastebėta, kad tarp dirvožemio teritorijos plotų ir perimetrų objektyviai egzistuoja fraktalinės sąsajos. Fraktalinės dimensijos Aquisalids, Petrocalcids ir Ustifluvents per minėtą laikotarpį padidėjo, o jų formos tapo sudėtingesnės. Stabilumo indeksas 2006 m. buvo didesnis. Tai rodė, kad erdvinė dirvožemio struktūra mažai pakito, tapo stabilesnė, palyginti nei buvo 1987 m. Šiuos atsitiktinius pokyčius iš esmės lėmė žmogaus veikla ir gamtinės sąlygos. Prieita prie išvados, kad sausojo ar pusiau sauso klimato regionuose kraštotvarkos vykdytojai dirvožemio pokyčiams turėtų skirti daugiau dėmesio.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248655
Author(s):  
Cangyu Li ◽  
Xinhui Wang ◽  
Mingzhou Qin

Agricultural non-point source pollution refers that substance such as nitrogen and phosphorus cause water environment pollution through surface runoff and underground leakage in agricultural production activities. Water environment pollution related to agricultural non-point source pollution in the Huaihe River Basin is becoming more and more prominent. Therefore, it is necessary to analyze the characteristic of soil nutrient in cultivated land and explore the spatial variation and influencing factors of soil nutrients at the watershed scale. A total of 239 topsoil samples were collected from the Guo river basin, and the related factors of soil organic matter (SOM), total carbon (TC), total nitrogen (TN), total phosphorous (TP), total potassium (TK) and potential of hydrogen (PH) were studied by using descriptive statistics and geostatistical methods. The results showed that TK and PH were weak variation, while SOM, TC, TN and TP were medium variation. Soil pH, TP, TK, TC and SOM had moderate spatial variability, which was caused by both random factors and structural factors such as soil texture, soil type, fertilization and local ecological restoration management. Soil TN showed a strong spatial correlation, mainly due to soil texture and soil type. If the recommended fertilization amount is still given based on the average value of soil nutrients ignoring the spatial heterogeneity, it will not only affect crop production efficiency and fertilizer utilization, but may also cause greater environmental pollution. This study can provide a theoretical basis for the management of agro-ecological environments throughout the basin area.


Author(s):  
Padala Raja Shekar

Abstract: A hydrological model helps in understanding of the hydrological processes and useful to measure water resources for effective water resources management. Hydrological cycle describes evaporation, condensation, precipitation and collection of earth water and on again. Hydrological models have been used in different watersheds across the world. The runoff estimation process is the most complex in nature that depends on the meteorological data and also on the various watershed physical parameters. To generate runoff data for a particular watershed it is needed to find out various parameters related to precipitation models. The HEC HMS (a Centre for Hydrological Engineering and Hydrological Modelling Systems introduced by the US Army Corps of Engineers) is a popularly used watershed model to simulate rainfall runoff process. The input variables used by hydrological models are rainfall data, runoff data, wind speed, relative humidity, soil type, catchment properties, hydrogeology and other properties. The Hydrological Modeling can also be an event based or may be continuous. This model is used to predict future impacts of the climate changes on the runoff of River basin and it is used to simulate runoff in ungauged watershed. This literature review represents that application of rainfall runoff modelling using HEC HMS is helpful in prediction of flood, water management and socio-economic development as well as food security. Keywords: HEC-HMS, hydrological modeling, rainfall-runoff simulation, soil type.


Author(s):  
Bruna Nascimento de Vasconcellos Schiavo ◽  
Ângela Maria Klein Hentz ◽  
Ana Paula Dalla Corte ◽  
Carlos Roberto Sanquetta

The Geoprocessing has been considered a fundamental tool in the definition of intervention policies and environmental management. This work presents a methodological guide of application of Geoprocessing technologies to characterize the environmental fragility of Arroio Cadena sub river basin, inserted in the municipality of Santa Maria, central region of Rio Grande do Sul state. We used the methodology proposed by Ross in (1994), which is based in the comprehension of the characteristics and the dynamics of the natural environment. To evaluate the fragility, it is established weights or grades to each situation that the variables can present. We used as indicators of the potential environmental fragility, the factors: declivity and soil type, and as indicators of emerging fragility, the factors: declivity, soil type and the use and occupation of the land. Among the uses of the basin, the areas of soil that is exposed and urbanization predominate. The basin has a weak potential fragility, with 52.9% in relation to the total area, and it is a consequence of the flat declivity aggregated in the soil type. It presents a strong emerging fragility, with 37.7% of the total area, due to the irregular occupations and the inadequate use of natural resources.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
MD López ◽  
P Jara ◽  
S Fischer ◽  
R Wilckens ◽  
H Serri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document