scholarly journals VECTOR-SPATIAL ANALYSIS OF GIS APPLICATION LAYERS FOR PLACING STRATEGIC POINTS IN DAM DESIGN

Author(s):  
S. Rodríguez Vázquez ◽  
N. V. Makrova

The use of geographic information systems (GIS) is widespread in water resources management. One of the development stages in this area was the use of GIS information not only for matching and executing queries, but also for analyzing trends and making decisions using applications that provide spatial analysis. GIS provides the ability to process spatial information and represent it using a similar reality model that represents spatial features from a point, line, and polygon, and thematic information. Spatial analysis in GIS includes a set of procedures used to study the structure and territorial relations based on knowledge of the position and characteristics of geographical features of the corresponding variables. Subject: delineation of areas for potential location of dams with the use of geospatial algorithms for distance. The research is based on the hypothesis that from geospatial analysis of the distances between peaks extracted from the .shp layers of rivers and areas of great importance for protection, it is possible to delineate potential areas for dam construction. Materials and methods: literature sources and results of preliminary experimental studies are analyzed, experimental planning is carried out. Results: This study examines the use of algorithms for processing distances between points used in the field of service geography, in connection with the use of localization and distribution models. To do this, algorithms are compared using criteria such as processing time, the ability to create new layers, and creating tables of distances between objects belonging to different layers. Conclusions: This evaluation is performed in order to select the most appropriate algorithm for selecting suitable points that can be evaluated in future analysis of localization and dam construction.

Author(s):  
Volodymyr Karedin ◽  
Nadiya Pavlenko

CREDO RADON UA software provides an automated calculation of the strength of the pavement structures of non-rigid and rigid types, as well as the calculation of the strengthening of existing structures. In the article, one can see the main features and functionality of the CREDO RADON UA software, the main points in the calculations according to the new regulations. Information support of the design process includes necessary databases, informational and helping materials that make up the full support of the pavement design process. The concept of CREDO RADON UA 1.0 software is made on the use of elasticity theory methods in calculations of initial information models of pavements. Performing optimization calculations, the roadwear in CREDO RADON UA is designed in such a way that no unacceptable residual deformation occurs under the influence of short-term dynamic or static loading in the working layer of the earth bed and in the structural layers during the lifetime of the structure. The calculation algorithms were made in accordance with the current regulatory documents of Ukraine. CREDO RADON UA software allows user to create information bases on road construction materials and vehicles as part of the traffic flow for calculations. The presented system of automated modeling makes it easier for the customer to control the quality of design solutions, to reasonably assign designs to layers of reinforcement, to quickly make comparisons of calculations of different designs for the optimal use of allocated funds. Prospects for further improvement of the program should be the results of theoretical and experimental studies on filling the databases, which are used as information support for automated design of road structures. Keywords: CREDO RADON UA, road, computer-aided design, repair project, road pavement, strengthening, construction, rigid pavement, elasticity module, a transport stream, calculation method, information support, dynamic or static loading.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 708
Author(s):  
Wenbo Liu ◽  
Fei Yan ◽  
Jiyong Zhang ◽  
Tao Deng

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.


Author(s):  
E. Ö. Avsar ◽  
M. F. Celik ◽  
E. Binbir ◽  
A. E. Arslan ◽  
D. Çokkeçeci ◽  
...  

This paper presents one of the applications of monitoring mechanical tests carried out in Construction Materials Laboratory of Istanbul Technical University. In Turkey, as in many countries, large amount of existing buildings exposed to seismic hazard, therefore various analytical and experimental studies are being conducted to contribute to the solution of the problem. One of the new generation retrofitting techniques is to strength the structural members by using Fiber Reinforcing Polymer (FRP). This study summarize the results of monitoring of deformations short concrete column samples under the incremental compression load. In this study, result of two rectangular short columns are given. One of them was tested as a reference sample, the other sample were tested after strengthening by PET reinforced polymer composite materials. Besides conventional displacement and strain measurement systems, laser scanning method was used to get three dimensional deformed shape of sample at each selected steps.


Author(s):  
G. Jayanthi ◽  
V. Uma

Geographic features in the real world are represented by spatial entities such as point, line, and area in two-dimensional surfaces. These features tend to evolve in time, thereby characterizing change in their physical identity, evolution into new species, thus describing geomorphological change of geographic features. These phenomena can be formalized using spatio-temporal relations. Formal representation of changing geographic (spatial) features is the interest of this chapter. Formal methods for representing the event and process that causes geomorphological change are presented. The formalization of geographic entities that are temporally and spatially related in a two-dimensional plane using the interval logic and spatial logic would facilitate the understanding of how modeling of space-time using spatio-temporal relations represents spatial evolution over time. Representation of temporal dynamism can be accomplished using various models. Modeling using spatio-temporal graph is more apt as it contributes to the cause-effect analysis.


2020 ◽  
Vol 39 (3) ◽  
pp. 3769-3781
Author(s):  
Zhisong Han ◽  
Yaling Liang ◽  
Zengqun Chen ◽  
Zhiheng Zhou

Video-based person re-identification aims to match videos of pedestrians captured by non-overlapping cameras. Video provides spatial information and temporal information. However, most existing methods do not combine these two types of information well and ignore that they are of different importance in most cases. To address the above issues, we propose a two-stream network with a joint distance metric for measuring the similarity of two videos. The proposed two-stream network has several appealing properties. First, the spatial stream focuses on multiple parts of a person and outputs robust local spatial features. Second, a lightweight and effective temporal information extraction block is introduced in video-based person re-identification. In the inference stage, the distance of two videos is measured by the weighted sum of spatial distance and temporal distance. We conduct extensive experiments on four public datasets, i.e., MARS, PRID2011, iLIDS-VID and DukeMTMC-VideoReID to show that our proposed approach outperforms existing methods in video-based person re-ID.


2020 ◽  
Vol 16 (3) ◽  
pp. 146-167
Author(s):  
Kanokwan Malang ◽  
Shuliang Wang ◽  
Yuanyuan Lv ◽  
Aniwat Phaphuangwittayakul

Skeleton network extraction has been adopted unevenly in transportation networks whose nodes are always represented as spatial units. In this article, the TPks skeleton network extraction method is proposed and applied to bicycle sharing networks. The method aims to reduce the network size while preserving key topologies and spatial features. The authors quantified the importance of nodes by an improved topology potential algorithm. The spatial clustering allows to detect high traffic concentrations and allocate the nodes of each cluster according to their spatial distribution. Then, the skeleton network is constructed by aggregating the most important indicated skeleton nodes. The authors examine the skeleton network characteristics and different spatial information using the original networks as a benchmark. The results show that the skeleton networks can preserve the topological and spatial information similar to the original networks while reducing their size and complexity.


2013 ◽  
Vol 717 ◽  
pp. 449-454
Author(s):  
Zong Yao Sha

Modeling Distance and Direction Relationships (DDR) is a key issue in spatial analysis and spatial reasoning. Various fields such as geology, hydrology, ecology, etc. apply DDR models to help digging out valuable patterns hidden in geoscientific dataset. This paper proposed two quantitative models through a raster-based approach for computing Euclidean distance and cardinal direction relationships, respectively, between a pair of spatial objects in a two-dimensional geographical space. The corresponding algorithms were designed and implemented. This new raster-based modeling can work universally on all types of spatial objects (point, line, polygon, or compound objects) and quantify DDR more accurately due to its sensitivity to object shapes. The usefulness of the modeling was demonstrated by various applications.


Author(s):  
Z. Li

Abstract. Map is an effective communication means. It carries and transmits spatial information about spatial objects and phenomena, from map makers to map users. Therefore, cartography can be regarded as a communication system. Efforts has been made on the application of Shannon Information theory developed in digital communication to cartography to establish an information theory of cartography, or simply cartographic information theory (or map information theory). There was a boom during the period from later 1960s to early 1980s. Since later 1980s, researcher have almost given up the dream of establishing the information theory of cartography because they met a bottleneck problem. That is, Shannon entropy is only able to characterize the statistical information of map symbols but not capable of characterizing the spatial configuration (patterns) of map symbols. Fortunately, break-through has been made, i.e. the building of entropy models for metric and thematic information as well as a feasible computational model for Boltzmann entropy. This paper will review the evolutional processes, examine the bottleneck problems and the solutions, and finally propose a framework for the information theory of cartography. It is expected that such a theory will become the most fundamental theory of cartography in the big data era.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ningning Zhou ◽  
Tingting Yang ◽  
Shaobai Zhang

Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.


Sign in / Sign up

Export Citation Format

Share Document