Functionalized Nano-graphene Oxide as Multi-modal Clinic for Effective Drug Delivery

Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.

2019 ◽  
Vol 20 (12) ◽  
pp. 2975 ◽  
Author(s):  
Madasamy Thangamuthu ◽  
Kuan Yu Hsieh ◽  
Priyank V. Kumar ◽  
Guan-Yu Chen

Graphene and its derivatives such as graphene oxide (GO) and reduced GO (rGO) offer excellent electrical, mechanical and electrochemical properties. Further, due to the presence of high surface area, and a rich oxygen and defect framework, they are able to form nanocomposites with metal/semiconductor nanoparticles, metal oxides, quantum dots and polymers. Such nanocomposites are becoming increasingly useful as electrochemical biosensing platforms. In this review, we present a brief introduction on the aforementioned graphene derivatives, and discuss their synthetic strategies and structure–property relationships important for biosensing. We then highlight different nanocomposite platforms that have been developed for electrochemical biosensing, introducing enzymatic biosensors, followed by non-enzymatic biosensors and immunosensors. Additionally, we briefly discuss their role in the emerging field of biomedical cell capture. Finally, a brief outlook on these topics is presented.


2017 ◽  
Vol 01 (04) ◽  
pp. 1750011 ◽  
Author(s):  
Shounak Roy ◽  
Amit Jaiswal

Graphene and graphene-based nanomaterials such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene quantum dots (GQDs) have gained a lot of attention from diverse scientific fields for applications in sensing, catalysis, nanoelectronics, material engineering, energy storage and biomedicine due to its unique structural, optical, electrical and mechanical properties. Graphene-based nanomaterials emerge as a novel class of nanomedicine for cancer therapy for several reasons. Firstly, its structural properties like high surface area and aromaticity enables easy loading of hydrophobic drugs. Secondly, presence of oxygen containing functional groups improve its physiological stability and also act as site for biofunctionalization. Thirdly, its optical absorption in the NIR region enable them to act as photoagents for photothermal and photodynamic therapies of cancer, both in vitro and in vivo. Finally, its intrinsic fluorescence property helps in bioimaging of cancer cells. Overall, graphene-based nanomaterials can act as agents for developing multifunctional theranostic platforms for carrying out more efficient detection and treatment of cancers. This review provides a detailed summary of the different applications of graphene-based nanomaterials in drug delivery, nucleic acid delivery, phototherapy, bioimaging and theranostics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2359
Author(s):  
Jung Park ◽  
Anisoara Cimpean ◽  
Alexander B. Tesler ◽  
Anca Mazare

TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.


2021 ◽  
Vol 59 (4) ◽  
Author(s):  
Mehrab Pourmadadi ◽  
Fatemeh Yazdian ◽  
Sara Hojjati ◽  
Kianoush Khosravi-Darani

Having an insight into graphene and graphene derivatives such as graphene oxide, reduced graphene oxide, and graphene quantum dots structures is necessary since it can help scientists to suspect the possible properties and features that using these carbon materials in preparation of a nanocomposite could bring out. In recent years, graphene and its derivatives are attractive with extensive applications in biosensors due to fascinating properties, such as high surface area, optical and magnetic properties, and high elasticity for the detection of microorganisms can be modified with some other materials such as macromolecules, oxide metals, and metals to improve the electrochemical behavior of the biosensor, and also can be modified with some other materials such as macromolecules, oxide metals, and metals to improve the electrochemical behavior of the biosensor. In this review paper, biosensors design strategies based on graphene and its derivatives (graphene-based nanocomposites in biosensors) are introduced. Then their application for the detection of microorganisms including Prions, Viroids, viral and bacterial cells as well as fungi, protozoa, microbial toxins, and even microbial-derived antibiotics are reviewed.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Samira Karimi ◽  
Emna Helal ◽  
Giovanna Gutierrez ◽  
Nima Moghimian ◽  
Milad Madinehei ◽  
...  

Graphene, the newest member of the carbon’s family, has proven its efficiency in improving polymers’ resistance against photodegradation, even at low loadings equal to 1 wt% or lower. This protective role involves a multitude of complementary mechanisms associated with graphene’s unique geometry and chemistry. In this review, these mechanisms, taking place during both the initiation and propagation steps of photodegradation, are discussed concerning graphene and graphene derivatives, i.e., graphene oxide (GO) and reduced graphene oxide (rGO). In particular, graphene displays important UV absorption, free radical scavenging, and quenching capabilities thanks to the abundant π-bonds and sp2 carbon sites in its hexagonal lattice structure. The free radical scavenging effect is also partially linked with functional hydroxyl groups on the surface. However, the sp2 sites remain the predominant player, which makes graphene’s antioxidant effect potentially stronger than rGO and GO. Besides, UV screening and oxygen barriers are active protective mechanisms attributed to graphene’s high surface area and 2D geometry. Moreover, the way that graphene, as a nucleating agent, can improve the photostability of polymers, have been explored as well. These include the potential effect of graphene on increasing polymer’s glass transition temperature and crystallinity.


2019 ◽  
Vol 6 (2) ◽  
pp. 134-140
Author(s):  
Pradip M. Jawanjal ◽  
Pritam B. Patil ◽  
Jayesh Patil ◽  
Mrunal Waghulde ◽  
Jietndra B. Naik

Background: The demand of an efficient nanocarrier in drug delivery, graphene and its derivatives are emerging as a rising star due to its remarkable chemical and structural properties. Objective: Graphene oxide (GO) has high surface area and ability to load high amount of aromatic drugs. Hence, the objective of the research was to load Trihexyphenidyl hydrochloride (THP), antiparkinsonian drug on GO ultrasonically by π-π stacking interaction. Methods: GO was synthesized by the modified Hummer method. The conjugation of GOTHP was generated by using Design-Expert Software and release study of GO-THP nanohybrids was performed in the dissolution tester by using a dialysis membrane. Results: By varying an amount of GO and THP, the effect on loading efficiency and drug release was studied. THP showed sustained release behavior with release efficiency of 89% to 98% over 8 h. GO-THP complex was characterized by UV-vis spectrophotometer, FTIR, FESEM and XRD analysis. Conclusion: GO-THP complex showed better-sustained release of the drug and can be useful for the reduction dose frequency as well as adverse effect with better patient compliance.


2017 ◽  
Vol 31 (7) ◽  
pp. 985-994 ◽  
Author(s):  
Zhiwen Jiang ◽  
Baoqin Han ◽  
Wanshun Liu ◽  
Yanfei Peng

Carboxymethyl-chitosan, a water-soluble derivative of chitosan, has emerged as a promising candidate for biomedical applications due to its excellent water solubility, biodegradation, biocompatibility, hydrating, antimicrobial, and nontoxicity. In this paper, the antitumor proliferation and metastasis was studied in vitro and in vivo to evaluate biocompatibility of carboxymethyl-chitosan as biomaterials for antitumor drug delivery. The results showed that carboxymethyl-chitosan could significantly reduce the clone formation and tumor migration of human cancer cells including kidney cancer cell line OS-RC-2, gastric cancer cell line SGC-7901, colon cancer cell line HT-29, and nonsmall cell lung cancer cell line NCI-H1650 in vitro. Through Lewis tumor-bearing C57BL/6 mouse model, carboxymethyl-chitosan was proved to be able to inhibit solid tumor growth and tumor metastasis to the liver and lung, meanwhile increase the level of tissue inhibitor of metalloproteinase 1 and E-cadherin, and decrease the level of mice blood serum matrix metalloproteinase 9. This study suggested that carboxymethyl-chitosan had certain antimetastasis effect and good biocompatibility and may have a potential application as a synergic antitumor reagent.


2018 ◽  
Vol 295 ◽  
pp. 97-108 ◽  
Author(s):  
Sakine Shirvalilou ◽  
Samideh Khoei ◽  
Sepideh Khoee ◽  
Nida Jamali Raoufi ◽  
Mohammad Reza Karimi ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2797
Author(s):  
Tejal V. Patil ◽  
Dinesh K. Patel ◽  
Sayan Deb Dutta ◽  
Keya Ganguly ◽  
Ki-Taek Lim

Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.


2020 ◽  
Vol 23 (7) ◽  
pp. 611-623
Author(s):  
Ahmed A. Soliman ◽  
Fawzy A. Attaby ◽  
Othman I. Alajrawy ◽  
Azza A.A. Abou-hussein ◽  
Wolfgang Linert

Aim and Objective: Platinum (II) and platinum (IV) of pyrophosphate complexes have been prepared and characterized to discover their potential as antitumor drugs. This study was conducted to prepare and characterize new ternary platinum (II) complexes with formamidine and pyrophosphate as an antitumor candidate. Materials and Methods: The complexes have been characterized by mass, infrared, UV-Vis. spectroscopy, elemental analysis, magnetic susceptibility, thermal analyses, and theoretical calculations. They have been tested for their cytotoxicity, which was carried out using the fastcolorimetric assay for cellular growth and survival against MCF-7 (breast cancer cell line), HCT- 116 (colon carcinoma cell line), and HepG-2 (hepatocellular cancer cell line). Results: All complexes are diamagnetic, and the electronic spectral data displayed the bands due to square planar Pt(II) complexes. The optimized complexes structures (1-4) indicated a distorted square planar geometry where O-Pt-O and N-Pt-N bond angles were 82.04°-96.44°, respectively. Conclusion: The complexes showed noticeable cytotoxicity and are considered as promising antitumor candidates for further applications.


Sign in / Sign up

Export Citation Format

Share Document