scholarly journals Influence of ZnO Nanoparticle Size and Concentration on the Polysulfone Membrane Performance

2017 ◽  
Vol 54 (2) ◽  
pp. 257-261 ◽  
Author(s):  
Stefan Catalin Pintilie ◽  
Laurentia Geanina Tiron ◽  
Iulian Gabriel Birsan ◽  
Daniel Ganea ◽  
Stefan Balta

The activity of using membrane technology has developed fast in the treatment of wastewater, drinking water and process water production. The main challenges in membrane filtration are fouling reduction, permeability increase and high efficiency in retention. The best example of membrane enhancement is increasing hydrophilicity. Nanoparticles have been proven that their presence in the membrane matrix increases the water affinity significantly. Although the zinc oxide nanoparticles have a positive effect over the membrane performance, the influence of zinc oxide (ZnO) nanoparticle size has not been studied enough. Two sizes of nanoparticle of ZnO and three concentrations were used for the preparation of composite polysulfone ultrafiltration membranes. The effects of the ZnO nanoparticles in the membrane matrix on the permeation properties, flux stability and retention were tested. SEM, EDX, porosity and contact angle measurement were conducted in this article, also. The experimental results indicated that ZnO-PSf composite membranes exhibits significant differences in the membrane properties due to nanoparticle addition and regardless of their size it leads to an increase in hydrophilicity, flux, permeability, retention and porosity. Decreasing the nanoparticle size leads to an increase in membrane performance.

2010 ◽  
Vol 660-661 ◽  
pp. 1081-1086 ◽  
Author(s):  
Priscila Anadão ◽  
Laís Fumie Sato ◽  
Hélio Wiebeck ◽  
Francisco Rolando Valenzuela-Díaz

The addition of a fourth component in the system composed by polymer/ solvent/ non-solvent is a technique generally employed to enhance membrane properties. Since polysulfone presents low hydrophilicity, which can hamper filtration performance, the addition of a hydrophilic material can be an important technique to improve this property. Therefore, the main purpose of this work is to understand the influence of addition of the activated carbon in the system polysulfone/ NMP/ water in terms of membrane morphology, hydrophilicity, thermal and mechanical resistance. From scanning electron micrographs, it could be seen that membrane surface became denser with the addition of higher activated carbon contents and the cross-section morphology was not changed. Acid-base interactions were favored with the activated carbon addition and the availability of Lifshtiz-van Der Waals interactions was decreased, being these two properties very important to avoid fouling formation onto membrane surface. The glass transition temperatures of the polysulfone composite membranes with higher activated carbon contents were increased. However, all activated carbon contents brittled the composite membranes in relation to the pristine polysulfone membrane.


2016 ◽  
Vol 32 (5) ◽  
Author(s):  
Avner Ronen ◽  
Sharon L. Walker ◽  
David Jassby

AbstractIn populated, water-scarce regions, seawater and wastewater are considered as potable water resources that require extensive treatment before being suitable for consumption. The separation of water from salt, organic, and inorganic matter is most commonly done through membrane separation processes. Because of permeate flux and concentration polarization, membranes are prone to fouling, resulting in a decline in membrane performance and increased energy demands. As the physical and chemical properties of commercially available membranes (polymeric and ceramic) are relatively static and insensitive to changes in the environment, there is a need for stimuli-reactive membranes with controlled, tunable surface and transport properties to decrease fouling and control membrane properties such as hydrophilicity and permselectivity. In this review, we first describe the application of electricity-conducting and electricity-responsive membranes (ERMs) for fouling mitigation. We discuss their ability to reduce organic, inorganic, and biological fouling by several mechanisms, including control over the membrane’s surface morphology, electrostatic rejection, piezoelectric vibrations, electrochemical reactions, and local pH changes. Next, we examine the use of ERMs for permselectivity modification, which allows for the optimization of rejection and control over ion transport through the application of electrical potentials and the use of electrostatically charged membrane surfaces. In addition, electrochemical reactions coupled with membrane filtration are examined, including electro-oxidation and electro-Fenton reactions, demonstrating the capability of ERMs to electro-oxidize organic contaminates with high efficiency due to high surface area and reduced mass diffusion limitations. When applicable, ERM applications are compared with commercial membranes in terms of energy consumptions. We conclude with a brief discussion regarding the future directions of ERMs and provide examples of several applications such as pore size and selectivity control, electrowettability, and capacitive deionization. To provide the reader with the current state of knowledge, the review focuses on research published in the last 5 years.


Author(s):  
A. M. Vijesh ◽  
J. Liya ◽  
P. C. Shyma

Severe drinking water scarcity is a major problem around the world and pressure driven membrane processes are gaining importance in the field of water purification. This work mainly focuses on improving membrane performance in terms of hydrophilicity, solute rejection, etc. It emphasizes on the preparation of polysulfone (PSf) based blend membranes via phase inversion method. PSf membrane is modified by the addition of zinc oxide (ZnO) nanoparticle at various compositions and the resultant membrane performances were studied. The PSf-ZnO membranes were characterized by ATR-IR and SEM. These membranes showed much better salt rejection performance. 


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Arifina Febriasari ◽  
Huriya ◽  
Annisa Hasna Ananto ◽  
Meri Suhartini ◽  
Sutrasno Kartohardjono

Batik wastewater, in general, is colored and has high concentrations of BOD (biological oxygen demand), COD (chemical oxygen demand), and dissolved and suspended solids. Polysulfone (PSf)-based membranes with the addition of polyvinyl pyrrolidone (PVP) were prepared to treat batik industrial wastewater. PSf/PVP membranes were prepared using the phase inversion method with N-methyl-2 pyrrolidone (NMP) as the solvent. Based on the membrane characterization through FESEM, water contact angle, porosity, and mechanical tests showed a phenomenon where the addition of PVP provided thermodynamic and kinetic effects on membrane formation, thereby affecting porosity, thickness, and hydrophilicity of the membranes. The study aims to observe the effect of adding PVP on polysulfone membrane permeability and antifouling performance on a laboratory scale through the ultrafiltration (UF) process. With the addition of PVP, the operational pressure of the polysulfone membrane was reduced compared to that without PVP. Based on the membrane filtration results, the highest removal efficiencies of COD, TDS (total dissolved solid), and conductivity achieved in the study were 80.4, 84.6, and 83.6%, respectively, on the PSf/PVP 0.35 membrane operated at 4 bar. Moreover, the highest color removal efficiency was 85.73% on the PSf/PVP 0.25 operated at 5 bar. The antifouling performance was identified by calculating the value of total, reversible, and irreversible membrane fouling, wherein in this study, the membrane with the best antifouling performance was PSf/PVP 0.25.


2017 ◽  
Vol 68 (2) ◽  
pp. 203-209
Author(s):  
Hussam Nadum Abdalraheem Al Ani ◽  
Anca Maria Cimbru ◽  
Corneliu Trisca-Rusu ◽  
Szidonia Katalin Tanczos ◽  
Adriana Cuciureanu ◽  
...  

This paper illustrates the possibility of producing iono-molecular separations using ionic colloidal ultrafiltration membrane of polysulfone synthetic solutions of cupric ions and nitro phenols through ultrafiltration assisted by polymeric nanoparticle composites based on polysulfone. In the present work, in order to reduce the operating pressure and increase the flow of water we are using the process of ultrafiltration through a polysulfone membrane in N-methylpyrrolidone 10% prepared by coagulation in isopropanol. The nanoparticles needed in colloidal ultrafiltration had been obtained through the immersion technique of precipitation of a solution of 5% PSf in N-methyl pyrrolidone containing 3% aniline in lower alcohols: methanol, ethanol, and isopropanol, followed by the oxidation of the remaining aniline in a solution of 10% hydrochloric acid and ammonium persulfate. The Nanoparticles of polysulfone (NP-PSf) and The three obtained variants of nanoparticles composites (NP-PSf-PANI) were morphologically (SEM) and (AFM), structurally and compositionally (FTIR) characterized and the results show that nanoparticles polysulfone have a much lower range than the composites. The Possibility of copper complexation by both nitrophenols, and by nanoparticle surface probably lead to the formation of more stable aggregates in the supply, which can sufficiently justify the increased retention. The Retentions of the chemical species in question use in all the tests made the same series:R NP-PSf-PANI-M] R NP-PSf-PANI-E] R NP-PSf-PANI-P] R NP-PSf


Solar RRL ◽  
2020 ◽  
Vol 4 (10) ◽  
pp. 2000241
Author(s):  
Geedhika K. Poduval ◽  
Leiping Duan ◽  
Md. Anower Hossain ◽  
Borong Sang ◽  
Yu Zhang ◽  
...  

Biorheology ◽  
1991 ◽  
Vol 28 (1-2) ◽  
pp. 27-37 ◽  
Author(s):  
C. Charcosset ◽  
L.R. Ding ◽  
M.Y. Jaffrin

2011 ◽  
Vol 20 (01) ◽  
pp. 183-194 ◽  
Author(s):  
SHAYLA SAWYER ◽  
LIQIAO QIN ◽  
CHRISTOPHER SHING

Zinc Oxide ( ZnO ) nanoparticles were created by a top-down wet-chemistry synthesis process ( ZnO - A ) and then coated with polyvinyl-alcohol (PVA) ( ZnO - U ). In ZnO - U , strong UV emission was apparent while the parasitic green emission, which normally appears in ZnO suspensions, was suppressed. A standard lift-off process via e-beam lithography was used to fabricate a detector by evaporating Aluminum ( Al ) as ohmic electrodes on the ZnO nanoparticle film. Photoconductivity experiments showed that linear current-voltage response were achieved and the ZnO - U nanoparticles based detector had a ratio of UV photo-generated current more than 5 times better than that of the ZnO - A based detector. In addition, non-linear current-voltage responses were observed when interdigitated finger Gold ( Au ) contacts were deposited on ZnO - U . The UV generated current to dark current ratios were between 4 and 7 orders of magnitude, showing better performance than the photodetector with Al contacts. ZnO - U were also deposited on Gallium Nitride ( GaN ) and Aluminum Gallium Nitride ( AlGaN ) substrates to create spectrally selective photodetectors. The responsivity of detector based on AlGaN is twice that of commercial UV enhanced Silicon photodiodes. These results confirmed that ZnO nanoparticles coating with PVA is a good material for small-signal, visible blind, and wavelength selective UV detection.


Sign in / Sign up

Export Citation Format

Share Document