scholarly journals Analysis of Chemical Properties of Forest Soils from Bacau County

2020 ◽  
Vol 71 (4) ◽  
pp. 81-86
Author(s):  
Vlad Emil Crisan ◽  
Lucian Constantin Dinca ◽  
Sorin Stefan Deca

State forests are analyzed periodically, once every 10 years. This includes an analysis of forest soils. The present paperdescribes and interprets the chemical properties of forest soils from Bacau County focusing on the period 1983-2015. As such, 823 soil profiles and 2435 pedogenetic horizons were analysed taking into consideration the soil type, pH, humus content, nitrogen content, base saturation degree and the total cation exchange capacity. The most widespread types of soils are: eutriccambisol, luvisol, preluvisoland dystriccambisol. The dystriccambisols from Bacau County are strongly acid soils, while eutriccambisols and preluvisols are moderately acid. All forest soils from this area have a high cationic exchange capacity and are very well (dystriccambisol, eutriccambisol,luvisol) or well supplied (preluvisol, rendzina) with nitrogen. Knowing the chemical properties of soils is important for the analysis of stand variability and for adopting silvicultural methods adequate for the management of long-lasting forests.

2020 ◽  
Vol 71 (2) ◽  
pp. 267-272
Author(s):  
Vlad Emil Crisan ◽  
Lucian Constantin Dinca

This paper aims to describe and interpret the chemical properties of forest soils in the Dobrogea Plateau. Data on soil analyzes are obtained in the laboratories of National Institute of Research and Development in Silviculture `Marin Dracea` after a recognized and accredited national and international methodology. There were analyzed soil reaction, base saturation degree, total cationic exchange capacity, humus content, total nitrogen and compared with results of soil analysis from other geographical regions of Romania. In the case of forest soils in Dobrogea Plateau, a higher pH was found than in other hilly or highland areas in the country to eutric cambisol, luvisol and preluvisol. Thus soil pH ranges from moderately acidic in the case of luvisols to low alkaline in the case of chernozems. Regarding the base saturation degree (V), there are higher values in this part of the country for preluvisol, luvisol and eutric cambisol and slightly lower values for phaeozem than in other regions of Romania. The amount of humus of eutric cambisols from Dobrogea Plateau is smaller than other hilly areas of the country and slightly higher than similar altitude areas.


Author(s):  
Avram CICŞA ◽  
◽  
Gheorghe Marian TUDORAN ◽  
Maria BOROEANU ◽  
Alexandru C. DOBRE ◽  
...  

This research aimed to determine the values of chemical properties and the relationships between the main pedoecological factors that characterize the soils in the Gurghiu Mountains. The mapping surveys were carried out on an area of 4,647.36 ha located in the mixed mountain forest sites (FM2) (1,000–1,400 m altitude). The area was stratified into homogeneous site units in terms of climate, hydricity, and trophicity. At the level of the elementary site units, 35 main soil profiles and 46 control profiles were placed. The number of profiles was determined statistically to ensure an error of no more than 10%. Soil samples collected from the main profiles were analyzed in the laboratory. Soil’s properties values decreased on the soil’s profile (humus content from 15 to 2%, nitrogen from 1.1 to 0.5%, sum of exchangeable hydrogen from 20 to 9 me/100 g soil, and total cationic exchange capacity from 38 to 20 me/100 g soil), except the pH and the base saturation degree (the pH increased on profile from 4.5 to 6, and the base saturation degree from 40 to 70%). The soil properties, except for moisture, were significantly affected by altitude, and decreased when the altitude increased. Soil trophicity can be characterized by a soil index, the values of which were between 17 and 42 for the analyzed soils. These values indicated soil-specific trophicity levels from oligotrophic to eutrophic.


2021 ◽  
Vol 70 (1) ◽  
pp. 13-26
Author(s):  
Miodrag Tolimir ◽  
Branka Kresović ◽  
Borivoj Pejić ◽  
Katarina Gajić ◽  
Angelina Tapanarova ◽  
...  

The impact of long-term (> 100 yr) irrigation on soil chemical properties was studied on eight plots in the Beli Drim river valley in Kosovo and Metohija near Klina, Serbia. For these studies, soil samples from shallow profiles were collected from only one or two depth zones of the Ah horizon; and from moderately deep and deep profiles, from two to three depth zones for the purpose of comparing irrigated field and non-irrigated meadow lands. Water from the Beli Drim River and surface gravity systems (irrigation furrows or border strip irrigation) were used for irrigation. Chemical variables included determination of pH-H2O, content of CaCO3, content of humus, hydrolytic acidity, sum of basic cations, cation exchange capacity, and base saturation. On irrigated soils, the results of chemical analysis showed on average a small increase in pH-H2O (0.07 pH units), as well as a significant decrease in humus content (2.00-4.75%), sum of basic cations (4.98-12.98%) and cation exchange capacity (12.8%) compared to the non-irrigated land of the study area. Long-term irrigation had no effect on hydrolytic acidity and base saturation in the Ah horizon of the investigated lands. Namely, the mentioned variations in the chemical properties of the investigated soils show that slight processes of reduction in the humus content and reduction of the content of base cations occured. Data on the chemical properties of the investigated soils indicate that the destructive processes of reduction in the humus content and leaching of base cations must be controlled in order to achieve a stable sustainable system of high productivity and prevent their further deterioration.


2019 ◽  
Vol 70 (7) ◽  
pp. 2371-2374 ◽  
Author(s):  
Lucian Dinca ◽  
Ion Chisalita ◽  
Ilie-Cosmin Cantar

The present paper characterizes the soils from Romania�s West Plain from a chemical property point of view, based on data from forest management plans. As such, for each forest district, soil samples from characteristic forest areas are gathered once at ten years and then analyzed. In this manner, soil reaction, base saturation degree, total cationic exchange capacity, humus content and total nitrogen where analyzed and compared with results of soil analysis from other Romanian areas.


2011 ◽  
Vol 3 (3) ◽  
pp. 683-688
Author(s):  
M. N. Islam ◽  
A. F. M. Sanaullah

Bangladesh is one of the tea producing countries of the world. It has 163 tea estates. Rangapani is a low yielding tea estate relative to other neighboring tea estates of Chittagong district in Bangladesh. A total 54 soil samples were collected from six different hills and three topographic positions having different depths of Rnagapanni Tea-Estate. Physico-Chemical properties of soils such as active acidity, reserve acidity, cation exchange capacity and clay content of the collected soil samples were determined. The measured parameters of the soil samples were plotted and analyzed with reference to site and topography. The parameters have been found to vary with sampling sites, depths and topography. Active acidity and reserve acidity were very low, with some exceptions compared to the optimum range for tea cultivation. Sand, silt, clay and cation exchange capacity (CEC) were found in reasonable range Keywords:  Soil; Active acidity; Reserve acidity; Cation exchange capacity; Clay content. © 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: 10.3329/jsr.v3i3.7503               J. Sci. Res. 3 (3), 683-688 (2011)


2020 ◽  
Vol 71 (9) ◽  
pp. 172-181
Author(s):  
Ilie-Cosmin Cantar ◽  
Lucian Dinca ◽  
Ion Chisalita

This paper analyses the chemical transformations of soils from certain copper waste heaps from Moldova Noua in the context of their afforestation. The analysis is based on a comparison between chemical properties of soils from different areas of the waste heaps. such as the planted and unplanted plateaus and slopes. The soil samples were gathered from soil profiles for each variants considered. and then analysis carried out in the �Marin Dracea� National Institute for Research and Development in Forestry laboratories. The results were compared and discussed in the context of the waste heaps� morphologic differences. such as land slope. aspect and the presence or absence of forest plantations. As such. the following elements were analyzed and compared: granulometric composition. soil chemical properties. soil reaction. humus content. total nitrogen. potassium content and heavy metals content. Forest vegetation had an important influence on the soil�s granulometric composition. on the humus and total nitrogen content. as well as on the soil�s reaction. In addition. granulometric composition differences between slopes that are exposed to the main wind and those that are not. suggest the importance of afforestation works for the former.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 570 ◽  
Author(s):  
Jin-Hua Yuan ◽  
Ren-Kou Xu

The chemical compositions of biochars from ten crop residues generated at 350°C and their effects on chemical properties of acid soils from tropical and subtropical China were investigated. There was greater alkalinity and contents of base cations in the biochars from legume residues than from non-legume residues. Carbonates and organic anions of carboxyl and phenolic groups were the main forms of alkalis in the biochars, and their relative contributions to biochar alkalinity varied with crop residues. Incubation experiments indicated that biochar incorporation increased soil pH and soil exchangeable base cations and decreased soil exchangeable acidity. There were greater increases in soil pH and soil exchangeable base cations, and a greater decrease in soil exchangeable acidity, for biochars from legume than from non-legume residues. The biochars did not increase the cation exchange capacity (CEC) of soils with relatively high initial CEC but did increase the CEC of soils with relatively low initial CEC at an addition level of 1%. The incorporation of biochars from crop residues not only corrected soil acidity but also increased contents of potassium, magnesium, and calcium in these acid soils from tropical and subtropical regions and thus improved soil fertility.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 411
Author(s):  
Jin-Hua Yuan ◽  
Sheng-Zhe E ◽  
Zong-Xian Che

Mineral composition and alkaline properties of palygorskite (Pal), and its ameliorative effects on chemical properties of acid soil were investigated. Dolomite was the main form of alkali in Pal and the acid neutralisation capacity of Pal was 215 cmol kg–1. Incubation experiments indicated that Pal incorporation increased soil pH, cation exchange capacity, base saturation and exchangeable K+, Na+, Ca2+ and Mg2+ contents, and decreased the levels of exchangeable H+, Al3+ and acidity, over a 1-year period. The ameliorative mechanisms were the dissolution of major alkaline matter in Pal (i.e. dolomite), and the exchange between released Ca2+ and Mg2+ with H+ in acidic soil. Hence, Pal can be used as a moderate acidic soil amendment.


1969 ◽  
Vol 5 (3) ◽  
pp. 241-247 ◽  
Author(s):  
B. W. Bache ◽  
R. G. Heathcote

SummaryOn a site in the Sudan Savanna, chemical properties of soils (except for phosphate) and the composition of cotton leaves were determined after fifteen annual treatments including dung, ammonium sulphate, single superphosphate and potassium chloride, in all combinations of three levels. In the soils dung increased C, N, cation exchange capacity, exchangeable Ca and Mg and pH, and decreased soluble Al and Mn; ammonium sulphate decreased pH, increased soluble Al and Mn, and decreased exchangeable Ca and Mg; potassium chloride had no obvious effects. In the plants dung increased P and reduced Mn; ammonium sulphate reduced Ca and Mg, and increased Mn; superphosphate increased P, Ca and Mg, and reduced K; potassium chloride increased K slightly. The most important results were the ability of ammonium sulphate to acidify the soil, as shown by soil properties and reflected in tissue composition, and the ability of dung to ameliorate these effects. Reduction of crop yield in the presence of adequate nutrient supply seems to have been due to excessive soil acidity.


Sign in / Sign up

Export Citation Format

Share Document