Analysis of the Impact of Thermal Rehabilitation on the Heat Demand. Case Study

2021 ◽  
Vol 16 ◽  
pp. 170-176
Author(s):  
Stan Ivan Felicia Elena ◽  
Duinea Adelaida Mihaela

The article presents a case study on the impact of thermal rehabilitation of buildings heat demand. In order to reduce specific heat consumption and, in general, heat consumption for heating and hot water preparation, measures are needed to rehabilitate and modernize the thermal protection of buildings and heating and hot water installations. The present study aims to determine the influence of thermal rehabilitation of buildings (insulation of exterior walls - in this case) making for this purpose a comparison of the values of thermal requirements before and after the thermal rehabilitation process for a building. Regarding the thermal insulation used in the case study, expanded polystyrene with a thickness of 10 cm was used for the exterior walls and mineral wool for ceiling. The main purpose of the work is to highlight the importance of thermal insulation of buildings mainly in terms of reducing energy costs and maintaining thermal comfort in homes

2020 ◽  
Vol 12 (11) ◽  
pp. 4532 ◽  
Author(s):  
Jacek Michalak ◽  
Sebastian Czernik ◽  
Marta Marcinek ◽  
Bartosz Michałowski

The external thermal insulation composite system (ETICS) improves the energy efficiency of buildings, and nowadays, this method is the most popular to insulate buildings in many European Union (EU) countries. The article presents the impact of producing ETICS with expanded polystyrene (EPS) or mineral wool (MW) on the natural environment using the life cycle assessment (LCA) method. The data used in the calculations, related to 2017 real production, were obtained from the externally verified inventory from five manufacturing plants located in different regions of Poland. The LCA of the examined products covered modules from A1 to A3 (cradle-to-gate), according to EN 15804 standard. The study determines and analyses the values of basic indicators related to environmental impacts and environmental aspects of resource use. It comprises indicators calculated for 1 m2 ETICS for five thicknesses of the mentioned thermal insulation materials. Results show that for all environmental indicators, MW systems are characterized by a more negative environmental impact than the equivalent systems with EPS. The study aims to highlight knowledge about ETICS sustainability. The data presented in work are essential for assessment in terms of the sustainable development of ETICS. Such an evaluation is not just a need for the future but a necessity for the present.


2018 ◽  
Vol 137 ◽  
pp. 62-68 ◽  
Author(s):  
Kestutis Miskinis ◽  
Vidmantas Dikavicius ◽  
Andrius Buska ◽  
Karolis Banionis

Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1135 ◽  
Author(s):  
Adnan Hossain ◽  
Monjur Mourshed

This study is aimed at assessing the impact of the insulation refurbishment of the English housing stock on the embodied energy needed for the various refurbishment scenarios and their corresponding operational energy use reductions. An embodied energy model comprising 22 million homes has been constructed, enabling the assessment and comparison of operational and embodied energy use due to the insulation refurbishment of various applicable building elements. Results indicate that mineral wool, sheep wool and expanded polystyrene (EPS) are the optimum insulation materials for cavity walls, cold pitch roofs and warm pitched roofs, respectively.


2009 ◽  
Vol 15 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jolanta Šadauskienė ◽  
Andrius Buska ◽  
Arūnas Burlingis ◽  
Raimondas Bliūdžius ◽  
Albinas Gailius

In order to reduce the amounts of work at the construction site, single‐ply dual density thermal insulating roofing boards are used with increasing frequency for thermal insulation of flat roofs. In this case, the joints between boards are not overlapped by the other ply over it; therefore gaps of varying width form between the sides of the boards through the entire thickness of the insulating layer, whose effect on the effective thermal conductivity of the thermal insulating layer must be evaluated. The aim of this project was to assess the reliability of standard method, used to determine the impact of such air gaps on the effective thermal conductivity of the thermal insulating layer by comparing the results of calculations and the results of measurements of thermal conductivity, also to determine the correction factors for thermal transmittance of horizontal thermal insulation layers due to the forming vertical air gaps between the single‐ply mineral wool boards. After measurements of thermal resistances of 50 mm thick thermal insulation board with the air gaps which width varied from 3 mm to 20 mm, it was determined that the thermal conductivity value of the air gaps increases with the increment of the width of air gaps. After completion the experimental measurements of thermal conductivity it was determined that the height of closed and unventilated or partly ventilated air gaps has no effect on the properties of effective thermal conductivity of the thermal insulation layer when the air gap width is up to 5 mm. When wider unventilated or partly ventilated air gaps occur, the effective thermal conductivity coefficient increases proportionally as the height of the air gaps increases. Calculated according to the standard method the affix to the thermal transmittance is overly general and not always appropriate. In some cases it is 6 times higher or 4 times lower than the measured one. In this paper a method to evaluate the effects of air gaps by the use of correction factor to the thermal transmittance of the horizontal thermal insulating layer is proposed. Santrauka Nornt sumažinti darbų apimtis statybos vietoje, stogams šiltinti vis dažniau naudojamos vienu sluoksniu klojamos dvitankės termoizoliacinės plokštės. Šiuo atveju plokščių sandūros neperdengiamos, todėl tarp plokščių kraštinių susidaro įvairaus pločio plyšių, kurių įtaka termoizoliacinio sluoksnio šilumai perduoti turi būti įvertinta. Šio darbo tikslas yra įvertinti standartinio metodo, taikomo tokių plyšių poveikiui sluoksnio šilumos laidumui, patikimumui nustatyti lyginant skaičiavimo ir šilumos laidumo matavimų rezultatus, nustatyti horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento pataisas dėl vertikaliųjų oro plyšių susidarymo. Apskaičiavus 50 mm storio termoizoliacinio sluoksnio oro plyšių šilumines varžas, kai plyšių plotis yra nuo 3–20 mm, nustatyta, kad oro plyšių šilumos laidumo koeficiento vertė didėja didėjant oro plyšio pločiui. Atlikus eksperimentinius šilumos laidumo matavimus, nustatyta, kad susidarančių uždarų ir nevėdinamų arba iš dalies vėdinamų oro plyšių aukštis neturi įtakos termoizoliacinio sluoksnio šilumos laidumo savybėms, kai oro plyšys yra iki 5 mm pločio. Esant platesniems uždariems ir nevėdinamiems oro plyšiams, šilumos laidumo koeficientas proporcingai didėja didėjant oro plyšių aukščiui. Pagal standartinį metodą skaičiuotas šilumos perdavimo koeficiento priedas yra per daug apibendrinantis ir ne visada tinkamas. Kai kuriais atvejais jis yra 6 kartus didesnis arba 4 kartus mažesnis už išmatuotąjį. Šiame darbe pasiūlytas horizontaliojo termoizoliacinio sluoksnio šilumos perdavimo koeficiento priedo, naudojamo plyšių įtakai įvertinti, skaičiavimo metodas.


2020 ◽  
Vol 10 (21) ◽  
pp. 7484 ◽  
Author(s):  
Paweł Krause ◽  
Artur Nowoświat ◽  
Krzysztof Pawłowski

This paper presents a case study on how to improve the energy efficiency of an institutional building of significant heritage value through retrofitting the external wall system. This building is located in Upper Silesia, Poland. Due to the architectural value of the facade, thermal insulation had to be applied from the inside. As part of this publication, basing on the measurements and simulations, the authors present the results involving the improvement of energy efficiency of the insulated wall. On this basis, they also demonstrate the impact of insulation from the inside on the change of humidity inside the room. The tests were carried out both quantitatively by means of heat flux measurement and qualitatively by means of infrared temperature measurement. The research was supported by numerical modeling. The obtained results indicate that the thermal insulation used in the form of mineral insulation boards applied from the inside improves thermal insulation of the wall. Thus, heat losses through the examined envelope were limited. Computer simulations indicated that no condensation may occur under the condition considered.


2013 ◽  
Vol 805-806 ◽  
pp. 1542-1546
Author(s):  
Can Cai Wang ◽  
De Gong Chang

For provide outstanding thermal insulation capacity for the refuge chambers, this paper firstly put forward a 5 layer heat insulation structure for refuge chambers. Mineral wool and acrogel were used as the heat insulation materials because of their excellent heat insulation and fire resistance capability. Then the paper determined the thickness of each layer by theoretic analyze using heat transfer theory, and found two 10 mm layers of acrogel and a 62mm layer mineral wool were ideal thickness. Then the paper designed the cooling system, according the heat analysis. And found the ice cake was best fit for refuge chambers, but it must equip with air flue to keep the enclosed air flowing. At last, 8 people were employed in the closed chamber for 106 hours, and raised outside temperature to 55°C for 5 hours. The chambers inside temperature was most controlled under 35°C. Then the paper increased the thickness of acrogel layer according to the experiment results at last. Theory analysis and experiment show that the designed heat insulation structure and cooling system had an excellent thermal protection capability.


2015 ◽  
Vol 666 ◽  
pp. 17-29 ◽  
Author(s):  
Sukhdeo R. Karade

The growing environmental concern throughout the globe has led architects & engineers to design energy efficient buildings. Consequently, they are looking for building materials that can reduce the energy consumption in buildings to maintain the comfort level. Use of proper thermal insulating materials can reduce the energy required for heating or cooling of the buildings. Presently mineral wool and various foams are used for this purpose. Efforts are being made to use wastes in making thermal insulation materials so that the impact on environment can be further reduced. Cork granules are obtained as waste from the cork processing industries that make ‘bottle stoppers’ as a main product. These granules have a low density and could be used as lightweight aggregates for making concrete with low thermal conductivity. This article describes the physico-mechanical properties of lightweight cementitious composites made using cork granules. Further, environmental benefits of their application in thermal insulation of buildings has been discussed.


Author(s):  
A. Radkevich ◽  
K. Netesa ◽  
T. Tkach

Obviously, it goes without saying that sustainable economic development and an increase in the cost of energy carriers require improvements in the energy efficiency of existing buildings and structures. For this reason, intelligent energy monitoring and searching for new methods aimed at improving the performance of buildings have been of utmost importance. One of the feasible solutions to improving the performance of existing buildings would arguably be the reduction in energy costs by increasing the insulating properties of their facade systems. This paper analyses the current trends in the overhaul of facade systems in Ukraine. The research results into facade system renovation conducted via the ProZorro public e-procurement system demonstrated that a significant number of repair works were the improvements in the thermal insulation properties of facade systems by means of mineral wool panels and plaster cladding. The percentage of this type of overhaul contracts reached 67% of the total number of investigated contracts. Facade insulation renovation using expanded polystyrene plates approximately made up 20%. The restoration works of an outer layer of façade systems, including plaster restoration, spot-priming, restoration of hard putty, plaster facing and painting works, revetment, etc., which do not impact the energy efficiency of a building, made up about 13% of the total number of contracts. The area of façade works in question averaged from 200 m2 to 1500 m2. Having compared the prices per one square metre of a façade system, the average cost for such works has been calculated in the range of 1500 UAH to 2000 UAH; while the cost of advanced works ranged from 3500 UAH to 4000 UAH. Given a short maintenance-free service life of 7-10 years of the corresponding systems and guided by cost-effectiveness reasons, it has been suggested replacing these facade systems with ventilated facade systems with thermal insulation and ceramic cladding. This façade system has proved to have a significantly longer durability and maintenance-free service life, while the initial investment costs will further increase the energy efficiency properties of a building. As the result, this will enable keeping energy operating costs to minimum, which will consequently increase the building’s cost-effectiveness and its compliance with current global trends in energy conservation.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8047
Author(s):  
Łukasz Amanowicz

Due to the energy transformation in buildings, the proportions of energy consumption for heating, ventilation and domestic hot water preparation (DHW) have changed. The latter component can now play a significant role, not only in the context of the annual heat demand, but also in the context of selecting the peak power of the heat source. In this paper, the comparison of chosen methods for its calculation is presented. The results show that for contemporary residential buildings, the peak power for DHW preparation can achieve the same or higher value as the peak power for heating and ventilation. For this reason, nowadays the correct selection of the peak power of a heat source for DHW purposes becomes more important, especially if it uses renewable energy sources, because it affects its size and so the investment cost and economic efficiency. It is also indicated that in modern buildings, mainly accumulative systems with hot water storage tanks should be taken into account because they are less sensitive to design errors (wrongly selected peak value in the context of the uncertainty of hot water consumption) and because they result in acceptable value of peak power for DHW in comparison to heating and ventilation.


Sign in / Sign up

Export Citation Format

Share Document