scholarly journals Analysis Of Antenna Radiation Of Broadband Pulses

Author(s):  
A. Kozak ◽  
P. Potapsky ◽  
I. Garasymchuk

Electromagnetic energy can alter metabolic and biosynthetic processes at certain pulse EMF parameters (pulse rate, opacity, power, exposure) can slow and suppress cell growth. Irradiation in the MM range of RNA and DNA containing the virus leads to a decrease in their infectivity. Inhibition of bacterial culture growth, alteration of phagocytic activity, protein biosynthesis, ultrastructural changes in cells with EHF EMF interaction. In studies with microorganisms, it was found that the biological effect of the effect of EMF on microorganisms was resonant. As one of the main mechanisms of the suppressive effect of EHF radiation on harmful microorganisms is the role of biological membranes in the response of microorganisms to EMF. Electrical phenomena occurring in biomembranes play an extremely important role. The formation of the transmembrane potential difference is due to the selective ionic conductivity of the membranes as a whole, it is an excellent dielectric, so that the biolayers of the insulating lipid molecules are able to withstand EP strengths of the order of 105 V / cm. The magnitude of the electrical potential on the membrane is extremely important. According to the modern theory of transmembrane transport, namely the EP inside the membrane, the fluxes of the necessary substances from the environment inside the cell and from the cell into the environment through special hydrophilic channels, most likely, are of a lipoprotein nature. The rate of ion penetration through the membrane is determined by such properties as thickness, value of DP, the presence of fixed electric charges on the membrane, the size and number of pores in the membrane, the presence of fixed charges in the pores and some others.

2018 ◽  
Vol 22 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Aleksander Cherenkov ◽  
Taras Hutsol ◽  
Igor Garasymchuk ◽  
Jurii Pancyr ◽  
Dmytro Terenov ◽  
...  

AbstractElectromagnetic energy can alter metabolic and biosynthetic processes and under certain parameters of pulsed EMF it can change pulse repetition frequency, operation cycle, power, exposure, as well as it can slow down and inhibit cell growth. MW irradiation range of RNA and DNA – containing virus reduces their infectivity. Inhibition of bacterial cultures growth, changes in phagocytic activity of protein biosynthesis, ultrastructural changes in the cells when exposed to EMF EHF. It was found in experiments with micro-organisms that biological effects of EMF on microorganisms wore a resonant character. One of the basic mechanisms of inhibitory action of EHF radiation on harmful microorganisms is the role of membranes in biological reactions of microorganisms on the EMR.


2020 ◽  
Vol 21 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Mohamed A. Ragheb ◽  
Marwa H. Soliman ◽  
Emad M. Elzayat ◽  
Mervat S. Mohamed ◽  
Nada El-Ekiaby ◽  
...  

Background: Doxorubicin (DOX) is the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance, is one of chemotherapy’s significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. Objective: Investigating the role of miR-520c-3p in enhancement of anti-tumor effect of DOX against HepG2 cells. Methods: Expression profile for liver related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. Expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using western blot technique. Results: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis including LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. Conclusion: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate chemosensitivity of HepG2 cells toward DOX treatment, providing a promising therapeutic strategy in HCC.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Natália Salomão ◽  
Michelle Brendolin ◽  
Kíssila Rabelo ◽  
Mayumi Wakimoto ◽  
Ana Maria de Filippis ◽  
...  

Intrauterine transmission of the Chikungunya virus (CHIKV) during early pregnancy has rarely been reported, although vertical transmission has been observed in newborns. Here, we report four cases of spontaneous abortion in women who became infected with CHIKV between the 11th and 17th weeks of pregnancy. Laboratorial confirmation of the infection was conducted by RT-PCR on a urine sample for one case, and the other three were by detection of IgM anti-CHIKV antibodies. Hematoxylin and eosin (H&E) staining and an electron microscopy assay allowed us to find histopathological, such as inflammatory infiltrate in the decidua and chorionic villi, as well as areas of calcification, edema and the deposition of fibrinoid material, and ultrastructural changes, such as mitochondria with fewer cristae and ruptured membranes, endoplasmic reticulum with dilated cisterns, dispersed chromatin in the nuclei and the presence of an apoptotic body in case 1. In addition, by immunohistochemistry (IHC), we found a positivity for the anti-CHIKV antibody in cells of the endometrial glands, decidual cells, syncytiotrophoblasts, cytotrophoblasts, Hofbauer cells and decidual macrophages. Electron microscopy also helped in identifying virus-like particles in the aborted material with a diameter of 40–50 nm, which was consistent with the size of CHIKV particles in the literature. Our findings in this study suggest early maternal fetal transmission, adding more evidence on the role of CHIKV in fetal death.


Author(s):  
Sherin Saheera ◽  
Vivek P Jani ◽  
Kenneth W Witwer ◽  
Shelby Kutty

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma-membrane ectosomes or microvesicles and endosomal-origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. Here, we summarize what is known about EV biogenesis, composition, and function, with an emphasis on the role of EVs in cardiovascular system. Additionally, we provide an update on the function of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.


1965 ◽  
Vol 122 (1) ◽  
pp. 99-116 ◽  
Author(s):  
Charles G. Cochrane ◽  
Emil R. Unanue ◽  
Frank J. Dixon

In acute nephrotoxic nephritis, polymorphonuclear leukocytes (polymorphs) accumulated in large numbers in the glomeruli in the first 12 hours. The endothelial cells were dislodged by the polymorphs which then came to lie immediately adjacent to the glomerular basement membranes. Ultrastructural changes in neither polymorphs nor basement membranes were observed. Depletion of polymorphs in both rats and rabbits prevented the development of proteinuria. This occurred when doses of nephrotoxic globulin were employed that produced proteinurias of as much as 1800 mg/kg/24 hours in intact rabbits, or enough to yield near maximal immediate proteinuria in intact rats. In addition, measurable glomerular damage was frequently averted until the onset of the secondary stage of NTN. Controls indicated that the polymorph depleted animals exhibited minimal non-specific changes in the blood, that the ability of their vascular beds to react to stimuli was not affected, and that deposition of nephrotoxic antibody and C' in the glomeruli was not inhibited. Elimination of polymorphs from the circulation was only partially effective in preventing glomerular damage when large doses of nephrotoxic globulin were used. This indicated that under these circumstances, a polymorph independent glomerular injury may also take place in first stage nephrotoxic nephritis. An indirect role of C', i.e., the accumulation of polymorphs, in bringing about glomerular injury in first stage nephrotoxic nephritis was apparent. When rabbit nephrotoxic globulin was injected into rats depleted of C', or when duck nephrotoxic globulin that fixed C' poorly was injected into normal rats, C' failed to bind with the antibody along glomerular basement membranes and polymorphs did not accumulate.


2021 ◽  
Author(s):  
Yuan Zhou ◽  
Li Chen ◽  
Deping Ding ◽  
Ziheng Li ◽  
Li Cheng ◽  
...  

Abstract Overcoming resistance to alkylating agents has important clinical significance in glioma. Cyanidin-3-O-glucoside (C3G) has a tumor-suppressive effect on tumor cells. However, whether it plays a role in temozolomide resistance in glioma is still unclear. We construct a TMZ-resistant glioma LN-18/TR cells, observe the effect of C3G on TMZ resistance in these cells, and explore the role of miR-214-5p in chemoresistance.Results show that β-catenin and MGMT were significantly upregulated in LN-18/TR cells. C3G upregulated miR-214-5p and enhanced the cytotoxic effect of temozolomide on LN-18/TR cells. C3G downregulated β-catenin and MGMT. The miR-214-5p mimic downregulated β-catenin and MGMT in LN-18/TR cells, whereas the miR-214-5p inhibitor had the opposite effect. The miR-214-5p inhibitor significantly blocked the cyanidin-3-O-glucoside-induced downregulation of β-catenin and MGMT. C3G or the miR-214-5p mimic enhanced temozolomide-induced apoptosis in LN-18/TR cells, whereas the miR-214-5p inhibitor blocked this effect. Further, C3G or miR-214-5p agomir combined with TMZ could significantly inhibit the growth of LN-18/TR tumors. Our research has discovered the potential signaling mechanism associated with C3G-mediated suppression of TMZ resistance in LN-18/TR cells through miR-214-5p, which can facilitate the treatment of MGMT-induced resistance in glioma cells.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (1) ◽  
pp. 70-78
Author(s):  
Thomas E. Wiswell ◽  
John A. Bley ◽  
Barbara S. Turner ◽  
Robert E. Hunt ◽  
David L. Fritz

To assess the role of high-frequency ventilator strategy in the propagation of airway injury, we compared the tracheobronchial histologic alterations in 20 newborn piglets ventilated for 8 hours with high-frequency flow interruption (HFFI). Ten animals were assigned to HFFI with a strategy of continuous pulsations at a frequency of 10 Hz and a mean airway pressure of 16 cm H2O. Ten piglets were treated at identical settings except for 10 one-second baseline pauses per minute to a positive end-expiratory pressure of 5 cm H2O. A semiquantitative scoring system was used to grade light microscopic tissue alterations in the trachea, carina, and mainstem bronchi. Ultrastructural changes were evaluated with scanning electron microscopy. The HFFI-continuous-treated piglets had significantly more damage in all areas than the HFFI-baseline pause group (P < .001). The upper tracheas of animals in both groups were altered to a greater extent than the lower tracheas (P < .007). In addition, numerous "skip" areas of injury were noted throughout the tracheas. High-frequency ventilator strategy is a determinant of the severity of airway histologic changes. Factors that adversely affect tissue oxygenation or cause direct mechanical trauma may also influence the degree of injury. Optimal operating characteristics and limitations of different high-frequency devices must be assessed before their use in human neonates.


2020 ◽  
Vol 21 (2) ◽  
pp. 529 ◽  
Author(s):  
Klaudia Barabás ◽  
Edina Szabó-Meleg ◽  
István M. Ábrahám

Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.


1996 ◽  
Vol 271 (5) ◽  
pp. R1344-R1352 ◽  
Author(s):  
M. Fleshner ◽  
F. X. Brennan ◽  
K. Nguyen ◽  
L. R. Watkins ◽  
S. F. Maier

Exposure to stressors can affect various aspects of immune function, including the antibody response. We have previously reported that rats exposed to an acute session of inescapable tail shock (IS) show long-term reductions in anti-keyhole limpet hemocyanin (KLH) immunoglobulin (Ig) M and IgG and a failure to expand Th1-like cells in response to KLH. To further investigate the potential role of decreased Th1-like cells in the IS-induced reduction of anti-KLH Ig, we examined two isotypes of IgG, IgG1 and IgG2a. Isotype switching is under cytokine control. Interleukin-4 helps B cells switch from making IgM to making IgG1, whereas interferon (IFN)-gamma helps B cells switch from making IgM to making IgG2a. In this paper we report that IS exposure reduces IFN-gamma levels 4 days after exposure to IS+KLH compared with immunized home cage controls. In addition, IS exposure reduced the Th1 cytokine-sensitive anti-KLH IgG2a but not Th2 cytokine-sensitive anti-KLH IgG1. This pattern of isotype reduction suggests that a failure to expand the Th1 cell, which results in less IFN-gamma, may contribute to the the IS-induced reduction in anti-KLH Ig. Glucocorticoids (GCs) differentially regulate Th1 and Th2 cells. Administration of the type II GC receptor antagonist RU-486 before IS blocked the IS-induced suppression in anti-KLH IgM, IgG, and IgG2a. Corticosterone (2.5 mg/kg), however, did not produce the suppression in anti-KLH Ig. These results support a role of corticosterone in mediating IS-induced reductions in in vivo antibody.


Sign in / Sign up

Export Citation Format

Share Document