Comparison of Methanol Extracts from Vegetables on Antioxidative Effect under In Vitro and Cell System

2005 ◽  
Vol 34 (8) ◽  
pp. 1151-1156 ◽  
Author(s):  
John C. Garancis ◽  
R. A. Pattillo

Growth of cell system (BeWo-cell line) derived from human gestational choriocarcinoma has been established and continuously maintained in-vitro. Furthermore, it is evident from the previous studies that this cell line has retained the physiological function of the placental trophoblasts, namely the synthesis of human chorionic gonadotrophil(HCG).The BeWo cells were relatively small and possessed single nuclei, thus indicating that this cell line consists exclusively of cytotrophoblasts. In some instances cells appeared widely separated and their lateral surfaces were provided with numerous microvilli (Fig.1).


2016 ◽  
Vol 116 (12) ◽  
pp. 1079-1088 ◽  
Author(s):  
Anna Björquist ◽  
Christian A. Di Buduo ◽  
Eti A. Femia ◽  
Robert F. Storey ◽  
Richard C. Becker ◽  
...  

SummaryTicagrelor is an antagonist of the platelet P2Y12 receptor for ADP, approved for the prevention of thromboembolic events in patients with acute coronary syndrome. Previous studies showed that ticagrelor has no significant activity versus P1 receptors for adenosine and other known P2Y receptors, with the exception of P2Y13, which was not tested. The P2Y12 antagonist cangrelor has been shown to also inhibit P2Y13 and to decrease the P2Y13-regulated capacity of megakaryocytes to produce pro-platelets. We tested whether or not ticagrelor inhibits P2Y13 signalling and function. The in vitro effects of ticagrelor, its active (TAM) and inactive (TIM) metabolites, cangrelor and the P2Y13 antagonist MRS2211 were tested in two experimental models: 1) a label-free cellular response assay in P2Y13-transfected HEK293 T-REx cells; and 2) pro-platelet formation by human megakaryocytes in culture. Ticagrelor, TAM, cangrelor and MRS2211, but not TIM, inhibited the cellular responses in P2Y13-transfected cells. In contrast, only MRS2211 and cangrelor, confirming previous results, inhibited pro-platelet formation by megakaryocytes in vitro. The platelet count of patients randomised to treatment with ticagrelor in the PLATO trial did not change during treatment and was comparable to those of patients randomised to clopidogrel. In conclusion, ticagrelor and TAM act as P2Y13 antagonists in a transfected cell system in vitro but this does not translate into any impact on pro-platelet formation in vitro or altered platelet count in patients.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 310-314 ◽  
Author(s):  
Susanne Neumann ◽  
Eshel A. Nir ◽  
Elena Eliseeva ◽  
Wenwei Huang ◽  
Juan Marugan ◽  
...  

Because the TSH receptor (TSHR) plays an important role in the pathogenesis of thyroid disease, a TSHR antagonist could be a novel treatment. We attempted to develop a small molecule, drug-like antagonist of TSHR signaling that is selective and active in vivo. We synthesized NCGC00242364 (ANTAG3) by chemical modification of a previously reported TSHR antagonist. We tested its potency, efficacy, and selectivity in a model cell system in vitro by measuring its activity to inhibit stimulation of cAMP production stimulated by TSH, LH, or FSH. We tested the in vivo activity of ANTAG3 by measuring its effects to lower serum free T4 and thyroid gene expression in female BALB/c mice continuously treated with ANTAG3 for 3 days and given low doses of TRH continuously or stimulated by a single administration of a monoclonal thyroid-stimulating antibody M22. ANTAG3 was selective for TSHR inhibition; half-maximal inhibitory doses were 2.1 μM for TSHR and greater than 30 μM for LH and FSH receptors. In mice treated with TRH, ANTAG3 lowered serum free T4 by 44% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 75% and 83%, respectively. In mice given M22, ANTAG3 lowered serum free T4 by 38% and lowered mRNAs for sodium-iodide cotransporter and thyroperoxidase by 73% and 40%, respectively. In conclusion, we developed a selective TSHR antagonist that is effective in vivo in mice. This is the first report of a small-molecule TSHR antagonist active in vivo and may lead to a drug to treat Graves' disease.


2017 ◽  
Vol 114 (35) ◽  
pp. E7236-E7244 ◽  
Author(s):  
Luther W. Pollard ◽  
Carol S. Bookwalter ◽  
Qing Tang ◽  
Elena B. Krementsova ◽  
Kathleen M. Trybus ◽  
...  

Studies in fission yeast Schizosaccharomyces pombe have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/Sf9 insect cell system with its two native light chains, Rlc1 and Cdc4. Milligram yields of soluble, unphosphorylated Myo2 were obtained that exhibited high actin-activated ATPase activity and in vitro actin filament motility. The fission yeast specific chaperone Rng3 was thus not required for expression or activity. In contrast to nonmuscle myosins from animal cells that require phosphorylation of the regulatory light chain for activation, phosphorylation of Rlc1 markedly reduced the affinity of Myo2 for actin. Another unusual feature of Myo2 was that, unlike class-II myosins, which generally form bipolar filamentous structures, Myo2 showed no inclination to self-assemble at approximately physiological salt concentrations, as analyzed by sedimentation velocity ultracentrifugation. This lack of assembly supports the hypothesis that clusters of Myo2 depend on interactions at the cell cortex in structural units called nodes for force production during cytokinesis.


2020 ◽  
Vol 31 (3) ◽  
pp. 145-159
Author(s):  
Haladu Ali Gagman ◽  
Nik Ahmad Irwan Izzauddin Nik Him ◽  
Hamdan Ahmad ◽  
Shaida Fariza Sulaiman ◽  
Rahmad Zakaria ◽  
...  

Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL–1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 μg mL–1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL–1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.


2015 ◽  
Vol 9 (35) ◽  
pp. 1984-1988
Author(s):  
Adu Francis ◽  
Antwi Apenteng John ◽  
Gariba Akanwariwiak William ◽  
Henry Sam George ◽  
Ntinagyei Mintah David ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document