scholarly journals Physicochemical Properties of Roasted Soybean Flour Bioconverted by Solid-State Fermentation Using Bacillus subtilis and Lactobacillus plantarum

2012 ◽  
Vol 17 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Min-Ju Park ◽  
Thiyam Genera ◽  
Sam-Pin Lee
Author(s):  
Adewale Ekundayo Oluremi ◽  
Ojokoh Anthony Okhonlaye

Green peas are known to contain anti-nutritional factors like enzymes inhibitors, phytates, oxalates, saponins and polyphenolic compounds, all of which limit their utilization hence, the study evaluate the effect of fermentation on the antioxidant and antinutrients content of green pea. Fermentation of green pea was done using both submerged and solid state fermentation for 7days. Isolation and identification of microorganism from the fermented sample was done on daily basis using standard microbiological and molecular techniques. The type of organism isolated from the submerged fermentation of Green pea included the bacteria (Bacillus subtilis, Lactobacillus Plantarum, Micrococcus roseus, Lactobacillus lactis, and Lactobacillus fermentum) and the fungi Rhizopus oryzae, Penicillium chrysogenum and Rhizopus stolonifer. While the type of organism isolated from the solid state fermentation of Green pea included some bacteria (Bacillus subtilis, Lactobacillus Plantarum and Lactobacillus lactis) and fungi (Penicillium notatum, Rhizopus oryzae, Penicillium chrysogenum, Candida albicans, Alternaria alternate and Rhizopus stolonifer). Fermentation reduced the antinutritional content of the fermented sample with submerged fermentation resulting in the highest reduction from 32.18 mg/g, 4.14 mg/g, 1.62 mg/g, 51.08 mg/g and 36.37 mg/g in the raw sample to 26.27 mg/g, 0.48 mg/g, 0.27 mg/g, 7.82 mg/g and 24.07 mg/g in submerged fermented green pea for saponin, tannin, oxalate, phytate and alkaloid respectively. However, Fermentation significantly p ≤ 0.05 increased the phenol, flavonoid and FRAP content of the fermented green pea with the solid state fermentation resulting in the highest increase from 3.50, 0.03 and 1.41 in the raw sample to 9.32, 0.12 and 9.66 in the solid state fermented green pea for phenol, flavonoid and FRAP content respectively. This study revealed that fermentation had significant effect on the antioxidant and antinutritional compositions of Green pea thereby reducing the antinutrient composition of Green pea in which will improve the nutrient value of Green pea.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 704
Author(s):  
Chia-Yu Tsui ◽  
Chun-Yao Yang

Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the β-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of β-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the β-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 μg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 μg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.


Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 52 ◽  
Author(s):  
Yong Xing Tan ◽  
Wai Kit Mok ◽  
Jaslyn Lee ◽  
Jaejung Kim ◽  
Wei Ning Chen

Brewers’ spent grains (BSG) are underutilized food waste materials produced in large quantities from the brewing industry. In this study, solid state fermentation of BSG using Bacillus subtilis WX-17 was carried out to improve the nutritional value of BSG. Fermenting BSG with the strain WX-17, isolated from commercial natto, significantly enhanced the nutritional content in BSG compared to unfermented BSG, as determined by the marked difference in the level of metabolites. In total, 35 metabolites showed significant difference, which could be categorized into amino acids, fatty acids, carbohydrates, and tricarboxylic acid cycle intermediates. Pathway analysis revealed that glycolysis was upregulated, as indicated by the drop in the level of carbohydrate compounds. This shifted the metabolic flux particularly towards the amino acid pathway, leading to a 2-fold increase in the total amount of amino acid from 0.859 ± 0.05 to 1.894 ± 0.1 mg per g of BSG after fermentation. Also, the total amount of unsaturated fatty acid increased by 1.7 times and the total antioxidant quantity remarkably increased by 5.8 times after fermentation. This study demonstrates that novel fermentation processes can value-add food by-products, and valorized food waste could potentially be used for food-related applications. In addition, the study revealed the metabolic changes and mechanisms behind the microbial solid state fermentation of BSG.


Sign in / Sign up

Export Citation Format

Share Document