scholarly journals Analysis of Antibiotic Resistance of Vibrio Сholerae Isolated From Environmental Objects in Russia in 2019

2021 ◽  
Vol 66 (3-4) ◽  
pp. 4-11
Author(s):  
N. A. Selyanskaya ◽  
L. A. Egiazaryan ◽  
M. I. Ezhova ◽  
N. I. Pasyukova ◽  
S. O. Vodopyanov

The aim of the study was to analyze the resistance to antibacterial drugs of Vibrio cholerae strains isolated from environmental water bodies on the territory of Russia in 2019.V.cholerae O1 El Tor (14) and V.cholerae nonO1/nonO139 strains were used in this work. Sensitivity/resistance to 11 antibacterial drugs was determined using the method of serial dilutions in a solid nutrient medium. The presence of drug resistance genes was determined using real-time PCR. Fluctuations in sensitivity/resistance of V.cholerae were found in various years. The phenotypic resistance of the strains to tetracycline and trimethoprim/sulfamethoxazole correlated with the presence of the tetR and dfrA1 genes in them. The presence of ICE was not detected in V.cholerae strains containing the tetR and qnrVC1 genes. The variability and wide spectrum of V.cholerae resistance require close attention to the problem of antibiotic resistance of cholera. The detection of ICE in the studied V.cholerae strains, as well as antibiotic resistance genes not associated with ICE elements, emphasize the need for molecular genetic monitoring of V.cholerae antibiotic resistance.

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 930
Author(s):  
Delia Gambino ◽  
Sonia Sciortino ◽  
Sergio Migliore ◽  
Lucia Galuppo ◽  
Roberto Puleio ◽  
...  

The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (blaTEM, blaOXA, tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.


2021 ◽  
Author(s):  
Farhan Yusuf ◽  
Kimberley Gilbride

Bacterial isolates found in aquatic ecosystems often carry antibiotic resistance genes (ARGs). These ARGs are often found on plasmids and transposons, which allows them to be proliferate throughout bacterial communities via horizontal gene transfer (HGT) causing dissemination of multidrug resistance. The increase in antibiotic resistance has raised concerns about the ability to continue to use these drugs to fight infectious diseases. Novel synthetic antibiotics like ciprofloxacin that are not naturally found in the environment were developed to prevent resistances. However, ciprofloxacin resistance has occurred through chromosomal gene mutations of type 2 topoisomerases or by the acquisition of plasmid-mediated quinolone resistances (PMQR). A particular PMQR, qnr genes, encoding for pentapeptide repeat proteins that confer low levels of quinolone resistance and protect DNA gyrase and topoisomerase IV from antibacterial activity. These qnr genes have been identified globally in both clinical and environmental isolates. The aim of this study was to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in the Greater Toronto Area and the potential dissemination of ciprofloxacin resistance. With the selective pressure of ciprofloxacin, we hypothesize that ciprofloxacin-resistant bacteria (CipR) in the environment may carry PMQR mechanisms while the sensitive population (CipS) would not carry PMQR genes. Isolates were tested for resistance to an additional 12 different antibiotics and identified using Sanger sequencing PCR products of the 16S rRNA gene. To determine which genes are responsible for ciprofloxacin resistance, multiplex PCR of associated qnr genes, qnrA, qnrB, and qnrS, was carried out on 202 environmental isolates. Our data demonstrate a similar prevalence of qnr genes was found in CipR (19%) and CipS (14%) populations suggesting that the presence of these genes was not necessarily correlated with the phenotypic resistance to the antibiotic. Furthermore, ciprofloxacinresistant bacteria were found in all locations at similar frequencies suggesting that resistance genes are widespread and could possibly arise through HGT events. Overall, determining the underlying cause and prevalence of ciprofloxacin resistance could help re-establish the effectiveness of these antimicrobial compounds.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3269 ◽  
Author(s):  
Jess A. Millar ◽  
Rahul Raghavan

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
G. Terrance Walker ◽  
Julia Quan ◽  
Stephen G. Higgins ◽  
Nikhil Toraskar ◽  
Weizhong Chang ◽  
...  

ABSTRACT We developed a rapid high-throughput PCR test and evaluated highly antibiotic-resistant clinical isolates of Escherichia coli (n = 2,919), Klebsiella pneumoniae (n = 1,974), Proteus mirabilis (n = 1,150), and Pseudomonas aeruginosa (n = 1,484) for several antibiotic resistance genes for comparison with phenotypic resistance across penicillins, cephalosporins, carbapenems, aminoglycosides, trimethoprim-sulfamethoxazole, fluoroquinolones, and macrolides. The isolates originated from hospitals in North America (34%), Europe (23%), Asia (13%), South America (12%), Africa (7%), or Oceania (1%) or were of unknown origin (9%). We developed statistical methods to predict phenotypic resistance from resistance genes for 49 antibiotic-organism combinations, including gentamicin, tobramycin, ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, ertapenem, imipenem, cefazolin, cefepime, cefotaxime, ceftazidime, ceftriaxone, ampicillin, and aztreonam. Average positive predictive values for genotypic prediction of phenotypic resistance were 91% for E. coli, 93% for K. pneumoniae, 87% for P. mirabilis, and 92% for P. aeruginosa across the various antibiotics for this highly resistant cohort of bacterial isolates.


2010 ◽  
Vol 73 (5) ◽  
pp. 916-922 ◽  
Author(s):  
R. P. CORDEIRO ◽  
T. DU ◽  
M. R. MULVEY ◽  
D. O. KRAUSE ◽  
R. A. HOLLEY

Lactic acid bacteria (LAB) are extensively used in the food industry for fermentation processes. However, it is possible that these bacteria may serve as a reservoir for antibiotic resistance genes that can be transferred to pathogens, giving rise to public health concerns. Animal operations that use antimicrobials as growth promotants have been linked to the origin of resistance due to the selective effect of low levels of antimicrobial used in this management strategy. The objective of this study was to determine the antimicrobial susceptibilities and mechanisms of resistance for 30 isolates of meat starter cultures commonly used in dry sausage fermentations to 20 antimicrobial agents. Susceptibility tests were performed by broth microdilution using Iso-Sensitest broth (90%, vol/vol) and de Man Rogosa Sharpe (MRS) broth (10%, vol/vol). The results showed that all 30 isolates exhibited resistance to at least three antimicrobials regardless of antimicrobial class while 17 or 30% of strains were resistant to antibiotics in three or six different classes, respectively. The incidence of antimicrobial resistance was higher among Pediococcus pentosaceus and lower for Staphylococcus carnosus strains. Genetic determinants for the lincosamide, macrolide, and tetracycline antimicrobials were not found using PCR. Phenotypic resistance in the absence of known resistance genes found here suggests that other mechanisms or genes might have contributed to the negative results. Further studies are needed to explore the genetic mechanisms underlying the prevalence of antibiotic resistance in Pediococcus species.


2020 ◽  
Vol 18 (6) ◽  
pp. 867-878
Author(s):  
Shelesh Agrawal ◽  
Laura Orschler ◽  
Jochen Sinn ◽  
Susanne Lackner

Abstract There are increasing concerns about wastewater treatment plants (WWTPs) acting as hotspots for antibiotic resistance genes (ARG). However, their role largely depends upon the treatment methods and antibiotics in the wastewater. To better understand these influences, we compared the occurrence and fate of ARG between a pond system in a developing country (Namibia) and an advanced WWTP (activated sludge system) in a developed country (Germany). A targeted metagenomic approach was used to investigate the wide-spectrum profiles of ARGs and their co-occurrence patterns at both locations. In total, 93 ARG subtypes were found in the German influent wastewater, 277 in the Namibian influent wastewater. The abundant ARG types found in Namibia and Germany differed, especially for multidrug resistance genes. The differences in occurrence and reduction can help to understand the performance of simple WWTP such as pond systems common in Namibia, where direct contact with wastewater is a potential risk for contamination.


2020 ◽  
Vol 65 (6) ◽  
pp. 387-393
Author(s):  
N. V. Davidovich ◽  
Natalya Nilolaevna Kukalevskaya ◽  
E. N. Bashilova ◽  
T. A. Bazhukova

Currently, the impact of antibiotic resistance on human health is a worldwide problem and its study is of great interest from a molecular genetic, environmental and clinical view-point. This review summarizes the latest data about antibiotic resistance, the classification of microorganisms as sensitive and resistant to the action of antibiotics, reveals the concept of minimum inhibitory concentration from modern positions. The resistance of microorganisms to antibacterial agents can be intrinsic and acquired, as well as being one of the examples of evolution that are currently available for study. Modern methods of whole-genome sequencing and complex databases of nucleotide-tagged libraries give an idea of the multifaceted nature of the mechanisms of intrinsic resistance to antibiotics and are able to provide information on genes encoding metabolic enzymes and proteins that regulate the basic processes of the physiology of bacteria. The article describes the main ways of spreading the resistance of microorganisms, reflects the concepts of “founder effect” and the fitness cost of bacteria, which underlie the emergence and evolution of antibiotic resistance. It is shown that the origin of antibiotic resistance genes that human pathogens currently possess can be traced by studying the surrounding not only clinical, but also non-clinical (ecological) habitats. As well as microorganisms of the surrounding ecosystems are the donors of resistance genes in horizontal gene transfer.


2021 ◽  
Author(s):  
Farhan Yusuf ◽  
Kimberley Gilbride

Bacterial isolates found in aquatic ecosystems often carry antibiotic resistance genes (ARGs). These ARGs are often found on plasmids and transposons, which allows them to be proliferate throughout bacterial communities via horizontal gene transfer (HGT) causing dissemination of multidrug resistance. The increase in antibiotic resistance has raised concerns about the ability to continue to use these drugs to fight infectious diseases. Novel synthetic antibiotics like ciprofloxacin that are not naturally found in the environment were developed to prevent resistances. However, ciprofloxacin resistance has occurred through chromosomal gene mutations of type 2 topoisomerases or by the acquisition of plasmid-mediated quinolone resistances (PMQR). A particular PMQR, qnr genes, encoding for pentapeptide repeat proteins that confer low levels of quinolone resistance and protect DNA gyrase and topoisomerase IV from antibacterial activity. These qnr genes have been identified globally in both clinical and environmental isolates. The aim of this study was to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in the Greater Toronto Area and the potential dissemination of ciprofloxacin resistance. With the selective pressure of ciprofloxacin, we hypothesize that ciprofloxacin-resistant bacteria (CipR) in the environment may carry PMQR mechanisms while the sensitive population (CipS) would not carry PMQR genes. Isolates were tested for resistance to an additional 12 different antibiotics and identified using Sanger sequencing PCR products of the 16S rRNA gene. To determine which genes are responsible for ciprofloxacin resistance, multiplex PCR of associated qnr genes, qnrA, qnrB, and qnrS, was carried out on 202 environmental isolates. Our data demonstrate a similar prevalence of qnr genes was found in CipR (19%) and CipS (14%) populations suggesting that the presence of these genes was not necessarily correlated with the phenotypic resistance to the antibiotic. Furthermore, ciprofloxacinresistant bacteria were found in all locations at similar frequencies suggesting that resistance genes are widespread and could possibly arise through HGT events. Overall, determining the underlying cause and prevalence of ciprofloxacin resistance could help re-establish the effectiveness of these antimicrobial compounds.


2016 ◽  
Vol 74 (8) ◽  
pp. 1753-1763 ◽  
Author(s):  
Stefanie Heß ◽  
Frauke Lüddeke ◽  
Claudia Gallert

Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are ‘only’ not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the ‘breakpoints’ for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.


2021 ◽  
Vol 37 (5) ◽  
pp. 123-131
Author(s):  
G.V. Presnova ◽  
V.G. Grigorenko ◽  
M.M. Ulyashova ◽  
М.Yu. Rubtsova

Abstract-Molecular genetic analysis methods based on the technology of colorimetric biochip have shown their effectiveness in identifying antibiotic resistance genes in bacteria. For the quantitative determination of nucleic acids, a comparative study of methods for converting digital color images of biochips into monochrome black-and-white versions using RGB and CMYK color models has been carried out. A 19-mer single-stranded oligonucleotide and two model mRNAs corresponding to the genes of two types of clinically relevant beta-lactamases (CTX-M and NDM) were studied as objects. The widest range of staining intensity and the best analytical characteristics for the determination of all types of studied nucleic acids were obtained using the red channel of the RGB color model. The detection limits were 0.10 ± 0.02 pmol/μl for the 19-mer oligonucleotide, and 3.0 ± 0.2 amol/μl and 8.0 ± 0.6 amol/μl for mRNA of beta-lactamases CTX-M-116 and NDM-1, respectively. The developed method can be used for the quantitative determination of expressing antibiotic resistance genes in bacteria with multiple resistance to antimicrobial drugs. Key words: colorimetric biochips, hybridization analysis, DNA, mRNA, antibiotic resistance, beta-lactamases The work was supported by the Government Program of the Lomonosov Moscow State University (АААА-А21-121011290089-4).


Sign in / Sign up

Export Citation Format

Share Document