Additive Fertigung mikromechatronischer Systeme*/Additive manufacturing of micromechatronic systems - NextFactory: Embedding AM (additive manufacturing) technologies in a hybrid process chain

2017 ◽  
Vol 107 (06) ◽  
pp. 426-431
Author(s):  
O. Refle ◽  
J. Günthel ◽  
M. Burgard ◽  
J. Janhsen ◽  
P. Springer ◽  
...  

Das Projekt „NextFactory“ kombiniert verschiedene Technologien mit dem Ziel, ein neuartiges Produktionsmittel zur Herstellung mikromechatronischer Systeme als funktionale Prototypen oder in kleinsten Stückzahlen zur Verfügung zu stellen. Der Fachartikel gibt einen Überblick zu dem produktionstechnischen Ansatz sowie zur Vision des Projekts und beleuchtet anschließend den aktuellen Projektstand. Zuletzt werden die aktuellen Ergebnisse zusammengefasst und ein Ausblick auf die kommenden Entwicklungsschritte gegeben.   The NextFactory project is based on different technological pillars to innovate the production technology for functional prototypes and small lot sizes of micro-mechatronic systems. This paper presents the vision of the project, followed by a closer look on the current status of the technological developments and concludes with the presentation of preliminary results and an outlook on the next development steps.

2018 ◽  
Vol 108 (06) ◽  
pp. 435-440
Author(s):  
E. Abele ◽  
T. Scherer ◽  
E. Schmidt

Die additive Fertigung von Zerspanungswerkzeugen rückt stärker in den Fokus industrieller und wissenschaftlicher Forschungsarbeiten. Die Designfreiheit additiver Verfahren ermöglicht die Herstellung komplexer Bauteile mit materialeffizienter und kraftflussgerechter Geometrie. Um diese Potenziale für neuartige Werkzeugkonzepte zu nutzen, wird eine CAE-Prozesskette zur Durchführung einer Finite-Elemente-Analyse (FEA) und anschließender Strukturoptimierung, basierend auf am Markt verfügbaren Softwarelösungen, vorgestellt.   Additive manufacturing of cutting tools is becoming more and more the focus of industrial and scientific research. The freedom of design of additive processes enables the production of complex components with material-efficient and force flux oriented geometry. To exploit this potential for novel tool concepts, a CAE process chain is presented for implementing an FEA and subsequently optimizing the structure based on software solutions available on the market.


2021 ◽  
Vol 111 (06) ◽  
pp. 363-367
Author(s):  
Lukas Langer ◽  
Matthias Schmitt ◽  
Georg Schlick ◽  
Johannes Schilp

Die additive Fertigung ermöglicht komplexe Geometrien und individualisierte Bauteile. Die hohen Material- und Fertigungskosten können ein Hindernis für einen wirtschaftlichen Einsatz sein. In der hybriden additiven Fertigung werden die Vorteile konventioneller sowie additiver Fertigungsverfahren kombiniert. Für eine weitere Steigerung der Wirtschaftlichkeit und Effizienz werden nichtwertschöpfende Schritte der Prozesskette identifiziert und Automatisierungsansätze entwickelt.   Additive manufacturing enables complex geometries and individualized components. However, high material and manufacturing costs can be a hindrance for economical use. Hybrid additive manufacturing combines the advantages of conventional with additive manufacturing processes. For a further increase in profitability and efficiency, non-value-adding steps in the process chain are identified and automation approaches developed.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-24
Author(s):  
Hande Güler Özgül ◽  
Onur Tatlı

Along with the technological developments, it is an expected situation to discover new developed production methods. Additive manufacturing technologies, such as three-dimensional (3D) printers are one of these methods, allowing direct production of parts with complex geometries that cannot be produced by conventional methods. The most popular and inexpensive method among additive manufacturing technologies is FDM (Fused Deposition Modeling) method. This method is particularly interesting for the manufacture of parts with low production volumes. In this study, a 3D-FDM printer with a print volume of 200x200x210 mm has been designed and manufactured.PLA (polylactic acid) test samples having 2 different infill geometries were produced with the 3D printer. Tensile, three-point bending and charpyimpact tests were applied to these samples to investigate the effect of inner filling geometry on mechanical properties. The inner filling geometries are in the form of grid and gyroid. According to the results, while the geometry with the tensile force is "grid", while the geometry with the maximum bending force is "gyroid".It was concluded that different inner filling geometries do not have a significant impact on Charpy impact strength.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 818-823
Author(s):  
Tobias Kelliger ◽  
Christoph Zachert ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Durch additive Fertigung können Zerspanwerkzeuge beanspruchungsgerecht und individuell designt und gefertigt werden. Um das volle ökonomische und ökologische Potenzial dieser Werkzeuge auszuschöpfen, ist eine übergreifende Prozesskettenbetrachtung von der Konstruktion über die Fertigung bis zur spanenden Nachbearbeitung nötig. Dabei müssen übergreifende Lösungen und Gestaltungsrichtlinien entwickelt werden.   Additive manufacturing enables an individual design and production of cutting tools that fulfills the requirements. However, the full economic and ecological potential can only be exploited by considering the entire process chain from design and production to post-processing. General solutions and design guidelines have to be developed.


2019 ◽  
Vol 89 (19-20) ◽  
pp. 4282-4294 ◽  
Author(s):  
DU Weerasinghe ◽  
Srimala Perera ◽  
DGK Dissanayake

With the increasing complexity of human lifestyles, the demand for functionalized or high-performance textile materials has seen a steep rise. However, the methods of producing thereof are still creating a negative impact on the environment. Although biomimicry is a possible means of catering for this demand, most of the emerging biomimetic technologies follow an unsustainable path, accentuated only on transferring functionalities of nature, by using chemical-intensive applications. Nevertheless, biomimicry holds promise in sustainable manufacturing, if toxic chemical usage can be reduced while structural applications are increased. This study reviews the possibilities of existing and futuristic textile technologies that could facilitate conscious biomimicking of functional textiles, rather than intense application of chemicals. A total of 283 research articles were initially obtained and screened to review the possibilities of combining biomimetic technologies with textile manufacturing technologies. Prospects of innovative textile technologies and additive manufacturing on the futuristic possibilities of structural mimicking of biological functionalities into textile materials are discussed comprehensively. Possible construction methods, including additive manufacturing and weaving in the micro/nano scale, are suggested for structural mimicking. It is also recommended to unfold the potential of biomimicry in producing functional textiles in order to alleviate the harmful impact already caused to the environment by the textile industry.


Designs ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Javaid Butt

Innovative technologies allow organizations to remain competitive in the market and increase their profitability. These driving factors have led to the adoption of several emerging technologies and no other trend has created more of an impact than Industry 4.0 in recent years. This is an umbrella term that encompasses several digital technologies that are geared toward automation and data exchange in manufacturing technologies and processes. These include but are not limited to several latest technological developments such as cyber-physical systems, digital twins, Internet of Things, cloud computing, cognitive computing, and artificial intelligence. Within the context of Industry 4.0, additive manufacturing (AM) is a crucial element. AM is also an umbrella term for several manufacturing techniques capable of manufacturing products by adding layers on top of each other. These technologies have been widely researched and implemented to produce homogeneous and heterogeneous products with complex geometries. This paper focuses on the interrelationship between AM and other elements of Industry 4.0. A comprehensive AM-centric literature review discussing the interaction between AM and Industry 4.0 elements whether directly (used for AM) or indirectly (used with AM) has been presented. Furthermore, a conceptual digital thread integrating AM and Industry 4.0 technologies has been proposed. The need for such interconnectedness and its benefits have been explored through the content-centric literature review. Development of such a digital thread for AM will provide significant benefits, allow companies to respond to customer requirements more efficiently, and will accelerate the shift toward smart manufacturing.


2019 ◽  
Vol 109 (06) ◽  
pp. 423-428
Author(s):  
C. Häußinger ◽  
M.F. Zäh

Die Additive Fertigung mittels Laser-Strahlschmelzen eröffnet in Bezug auf Leichtbaukonstruktionen viele Möglichkeiten. Um qualitativ hochwertige Funktionsbauteile zu fertigen, ist jedoch in den meisten Fällen eine spanende Nachbearbeitung erforderlich. Zu deren produktiver Umsetzung wurde im Rahmen des vorliegenden Beitrags eine Prozesskette am Beispiel des Fräsens definiert. Sie wurde zudem auf ihr Automatisierungspotenzial hin analysiert und an ausgewählten Prozessbausteinen wurden Automatisierungsmaßnahmen umgesetzt.   Additive manufacturing processes like laser beam melting enable many possibilities due to lightweight structures. However, a post-processing is necessary in most cases to produce high quality functional components. A process chain was developed for an efficient realization of the post-processing by milling. This process chain was analyzed for automation potentials and selected process modules were automated.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 752-757
Author(s):  
Lukas Weiser ◽  
Marco Batschkowski ◽  
Niclas Eschner ◽  
Benjamin Häfner ◽  
Ingo Neubauer ◽  
...  

Die additive Fertigung schafft neue Gestaltungsfreiheiten. Im Rahmen des Prototypenbaus und der Kleinserienproduktion kann das Verfahren des selektiven Laserschmelzens genutzt werden. Die Verwendung in der Serienproduktion ist bisher aufgrund unzureichender Bauteilqualität, langen Anlaufzeiten sowie mangelnder Automatisierung nicht im wirtschaftlichen Rahmen möglich. Das Projekt „ReAddi“ möchte eine erste prototypische Serienfertigung entwickeln, mit der additiv gefertigte Bauteile für die Automobilindustrie wirtschaftlich produziert werden können. Additive manufacturing (AM) offers new freedom of design. The selective laser-powderbed fusion (L-PBF) process can be used for prototyping and small series production. So far, it has not been economical to use it on a production scale due to insufficient component quality, long start-up times and a lack of automation. The project ReAddi aims to develop a first prototype series production to cost-effectively manufacture 3D-printed components for the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document