scholarly journals THE PHYLLOSPHERE, INDOOR MICROBIOME AND HUMAN HEALTH Authors

2020 ◽  
Vol 2 (2) ◽  
pp. 249-259

A healthy indoor environment is very vital as humans spend a greater percentage of their life within built environments. A healthy and quality environment is determined by the biodiversity of and features of the natural environment. The indoor environment just like every other environment possesses a unique community of microorganism which depends on the level of contact between the environment and natural sources. Plants are significant sources of microbial diversity in an environment. There is an interplay between the phyllosphere and the troposphere where the microorganisms released from the phyllosphere perform several beneficial effects consequently, improving human health. The indoor environment must however be enriched with natural sources of microbial release to enhance its biodiversity. This paper therefore focuses on the phyllosphere as a natural source for enhancing indoor biodiversity, the interplay between the phyllosphere and its surrounding environment and its implication on human health.

2021 ◽  
Vol 11 ◽  
Author(s):  
Janet P. Trammell ◽  
Shaya C. Aguilar

The Attention Restoration Theory (ART) has been widely cited to account for beneficial effects of natural environments on affect and attention. However, the effects of environment and exercise are not consistent. In a within-subjects design, participants completed affective and cognitive measures that varied in attentional demands (memory, working memory, and executive function) both before and after exercise in a natural and indoor environment. Contrary to the hypotheses, a natural environment resulted in lower positive affect and no difference in negative affect compared to an indoor environment. A natural environment resulted in the most improvement for cognitive tasks that required moderate attentional demand: Trail Making Test A and Digit Span Forwards. As predicted, exercise resulted in improved affect and improved executive function (Trail Making Test B). There were no interactions between environment and exercise. These results suggest that ART cannot fully explain the influence of environment on affect and cognition.


2018 ◽  
Vol 5 (5) ◽  
pp. 180382 ◽  
Author(s):  
Megan S. Thoemmes ◽  
Fiona A. Stewart ◽  
R. Adriana Hernandez-Aguilar ◽  
Matthew A. Bertone ◽  
David A.  Baltzegar ◽  
...  

The indoor environment created by the construction of homes and other buildings is often considered to be uniquely different from other environments. It is composed of organisms that are less diverse than those of the outdoors and strongly sourced by, or dependent upon, human bodies. Yet, no one has ever compared the composition of species found in contemporary human homes to that of other structures built by mammals, including those of non-human primates. Here we consider the microbes and arthropods found in chimpanzee beds, relative to the surrounding environment ( n  = 41 and 15 beds, respectively). Based on the study of human homes, we hypothesized that the microbes found in chimpanzee beds would be less diverse than those on nearby branches and leaves and that their beds would be primarily composed of body-associated organisms. However, we found that differences between wet and dry seasons and elevation above sea level explained nearly all of the observed variation in microbial diversity and community structure. While we can identify the presence of a chimpanzee based on the assemblage of bacteria, the dominant signal is that of environmental microbes. We found just four ectoparasitic arthropod specimens, none of which appears to be specialized on chimpanzees or their structures. These results suggest that the life to which chimpanzees are exposed while in their beds is predominately the same as that of the surrounding environment.


2020 ◽  
Vol 16 (8) ◽  
pp. 1196-1208
Author(s):  
Ramin Ghodsi ◽  
Rahmat Nosrati

Background: Oils and fats are the densest sources of food energy among food groups. Vegetable oils are constituted predominantly of triglycerides. Due to the importance of edible oils in nutrition, food industry and human health, great attention has been paid to them in recent years. Some minor bioactive constituents in oils include phospholipids, tocols, sterols, carotenoid, chlorophyll, phenols, phylokynon and terpenes. Objective: The aim of the present study was to examine beneficial effects of minor compounds in edible oils on human health. Results: Minor compounds of edible oils that we use daily can produce remarkable results in the prevention and treatment of various diseases like diabetes, inflammation, hypertension, cancer, allergy and central nervous system disorders due to their antimicrobial, anti-cancer, anti-viral, anti-oxidative, anti-inflammation, anti-mutagenic, hypolipidemic, and hypoglycemic properties, among others. Conclusion: The results of this study showed that the presence of beneficial minor compounds in oils could have significant impact on the prevention and treatment of various diseases. Therefore, the type of consumed oil can play an important role in human health.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1306
Author(s):  
Marcin Dziedziński ◽  
Joanna Kobus-Cisowska ◽  
Barbara Stachowiak

The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family (Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for plant-based remedies, supplements and functional food is growing worldwide. Although pine-based products are widely available in many parts of the world, they are almost absent as food ingredients. The literature shows the beneficial effects of pine preparations on human health. Despite the wide geographical distribution of pine trees in the natural environment, there are very few data in the literature on the widespread use of pine in food technology. This study aims to present, characterise and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles, as well as to summarise the available data on their health-promoting and functional properties, and the potential of their use in food and the pharmaceutical industry to support health. Various species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent, method, pine species and plant part used, all pine extracts contain a high number of polyphenols. Pine tree extracts exhibit several described biological activities that may be beneficial to human health. The available examples of the application of pine elements in food are promising. The reuse of residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct more research to find and develop new products and applications of pine residues and by-products.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 35
Author(s):  
Bety W. Hapsari ◽  
Manikharda ◽  
Widiastuti Setyaningsih

Roselle (Hibiscus sabdariffa L.), as an edible flower, has long provided an array of positive effects on human health. This benefit is a result of phenolic compounds that are naturally present mainly in the calyx. Plentiful medicinal remedies and functional foods based on this flower are available worldwide, as supported by the studies of phenolic compounds in recent decades. This paper aims to provide a comprehensive review of the composition, biological activity, and beneficial effects on human health of phenolic compounds in roselle. This review was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. A structured search in the published literature for phenolics compositions in roselle was required prior to the evaluation on the validity of the reported analytical methods. Reliable identification and quantification of phenolic compounds in roselle can be achieved by employing the proper extraction and separation methods. With ample alternative analytical methods discussed here, this review provided an aid for comprehending and selecting the most appropriate method for a particular study. The applications of the analytical methods highlighted indicated that phenolic acids, flavonoids, and their derivatives have been identified and quantified in roselle with a range of biological activities and beneficial effects on human health. It was also disclosed that the composition and concentration of phenolic compounds in roselle vary due to the growth factors, cultivars, and environmental influence. Finally, apart from the research progress carried out with roselle during the last ten years, this review also proposed relevant future works.


Author(s):  
Sultan Hassan Alamri ◽  
Nadeem Ali ◽  
Hussain Mohammed Salem Ali Albar ◽  
Muhammad Imtiaz Rashid ◽  
Nisreen Rajeh ◽  
...  

To control the spread of coronavirus disease (COVID-19), Saudi Arabia’s government imposed a strict lockdown during March–July 2020. As a result, the public was confined to indoors, and most of their daily activities were happening in their indoor places, which might have resulted in lower indoor environment quality. Polycyclic aromatic hydrocarbons (PAHs) were analyzed in household dust (n = 40) collected from different residential districts of Jeddah, Saudi Arabia, during the lockdown period. PAHs’ levels were two folds higher than the previously reported PAHs in indoor dust from this region. We detected low molecular weight (LMW) with two to four aromatic ring PAHs in all the samples with a significant contribution from Phenanthrene (Phe), present at an average concentration of 1590 ng/g of dust. Although high molecular weight (HMW) (5–6 aromatic ring) PAHs were detected at lower concentrations than LMW PAHs, however, they contributed >90% in the carcinogenic index of PAHs. The estimated daily intake (EDI) of specific PAHs was above the reference dose (RfD) for young children in high-end exposure and the calculated Incremental Lifetime Cancer Risk (ILCR) was >1.00 × 10−4 for both Saudi adults and young children. The study highlighted that indoor pollution has increased significantly during lockdown due to the increased indoor activities and inversely affect human health. This study also warrants to conduct more studies involving different chemicals to understand the indoor environment quality during strict lockdown conditions.


Author(s):  
Marco Giammanco ◽  
Fulvio Plescia ◽  
Manfredi M. Giammanco ◽  
Gaetano Leto ◽  
Carla Gentile

Citrus fruits are the main fruits of the Mediterranean diet and have been long recognized for their beneficial effects on human health. Observational studies have shown a significant association between dietary flavo-noid intake and reduced risk of cardiovascular and malignant diseases. The beneficial effects of citrus fruits on human health appear to be due to their high content in vitamins, minerals and fibers. In particular, the an-tioxidant and anti-inflammatory activities have been indicated as some of the mechanisms through which citrus fruits may thwarts the development of chronic degenerative diseases such as atherosclerosis and can-cer. This review would critically examine the results from numerous studies carried out in order assess the contribute of citrus flavonoids to the prevention of chronic pathological conditions including athero-sclerosis and cancer.


Author(s):  
J.D. Cooley ◽  
W.C. Wong ◽  
C.A. Jumper ◽  
D.C. Straus

2018 ◽  
Vol 9 (2) ◽  
pp. 102-105
Author(s):  
Shiekh Ajaz Rasool ◽  
Fehmida Mirza ◽  
Hera Waheed ◽  
Muhammad Munir

Probiotics (Pro-life live entities) provide the health and well being with multitude of beneficial effects on humans and animals (and relief against varied disorders). Probiotics may manage lactose intolerance, elevate immune profile, prevent colorectal cancers, reduce cholesterol and triglyceride profile, lowering blood pressure and inflammatory process. They also prevent osteoporosis, allergic reactions and help suppress H. pylori infections and other pathological manifestations. Microbial metabolites (even in the absence of live entities) may exert (analogous) effects on signal pathways and barrier functions. Such substances are referred as ‘Postbiotics’ (the plain metabolic byproduct of probiotics, bioactive manifestations in the host). Generally, postbiotics include secondary metabolites such as bacteriocins, organic acids, ethanol, acetaldehyde, reactive oxygen species (ROS). Such metabolites are inhibitory against pathogenic strains of different broad spectrum drug resistant microbial groups (MDR, XDR etc). Postbiotics are safe, apathogenic which may resist hydrolysis by enzymes of mammalian origin. It has been described that micro-RNA profile of human milk may exert the inhibitory effects of probiotics. Our research group has been investigating the merits of mammalian milk as a viable source of probiotics that secrete bioactive peptides against MDR/biofilm producing strains (ref. Streptococcus thermophilus and Enterococcus faecalis, a GIT probiont). These peptides are in the range of 10-16KDa molecular mass (sensitive to proteolytic enzymes as well). Genes coding for these peptides are plasmid associated. Mode of action of these peptides is bacteriostatic. Molecular identification of these Probiotic strains is being followed. This, on the whole marks an emphasis on biological operation of novel strains of Probiotic and their applications in medico-clinical areas to improve the human health and wellness.


Sign in / Sign up

Export Citation Format

Share Document