scholarly journals Late Wenlock graptolite-bearing tuffaceous sandstone from Bomholm, Denmark

1983 ◽  
Vol 31 ◽  
pp. 129-149
Author(s):  
M. Bjerreskov ◽  
K. Jørgensen

Late Wenlock (Silurian) graptoliferous dark grey mudstone and tuffaceous sandstone lithofacies occur, mainly as loose boulders, at the southeast coast of Bomholm. The mudstone may be estimated to repre­sent a 25 m thick sequence, and contains a graptolite fauna indicating the Cyrtograptus lundgreni Zone. The fauna is correlated with sequences of similar age from other areas, specially from Scania. Monograp-tus flemingi and Pristiograptus dubius pseudodubius are virtually the only species in the tuffaceous sandstone, some of which were deposited by turbidity currents. There is evidence from the taphonomy and diversity of the sandstone graptolites to suggest that the two species lived at a lower level in the water column than other, coexisting species. Size-frequency analyses are inconclusive as to whether or not the fauna in the tuffaceous sandstone represents a rapidly buried life-assemblage. The tuffaceous sandstone samples represent at least 3 airfall water deposited tuff beds and one bed deposited by turbidity current action. Mineral composition and grain-size of the tuffaceous sandstone indicate an origin from plinian eruptions at an estimated distance of about 300 km from Bomholm, and deposition at a depth of 1000 m ± 300 m, on the outer rim of the Fennoscandian platform. The volcanoes were probably situated on a continent south of Bomholm. The eruption centre later may either have disappeared within the Caledo­nian foldbelt or have been displaced by early Palaeozoic large-scale strike-slip faults towards the SE, along the SW border of the East-European craton.

1979 ◽  
Vol 16 (10) ◽  
pp. 1965-1977 ◽  
Author(s):  
W. M. Schwerdtner ◽  
D. Stone ◽  
K. Osadetz ◽  
J. Morgan ◽  
G. M. Stott

Two principal, possibly overlapping, periods of tectonic deformation can be distinguished in the Archean of northwestern Ontario, a period of dominantly vertical-motion tectonics and a period of dominantly horizontal-motion tectonics. Gigantic diapirs of foliated to gneissic tonalite–granodiorite developed during the first period and appear to be responsible for the gross structure of, and the major folds within, the metavolcanic–metasedimentary masses ("greenstone belts"). These diapirs are most likely due to mechanical remobilization of early tabular batholiths which originally intruded the oldest supracrustal rocks presently exposed. Later massive to foliated, dioritic to granitic plutons that vary from concordant, crescentic plutons to partly discordant plutons of various shapes and sizes were emplaced into the diapirs.The second period of tectonic deformation is characterized by large-scale dextral shearing and the development of major transcurrent faults under northwesterly regional compression. The strike-slip motions of this period outlasted the late plutonism, and led to the development of mylonitic zones which cut all Archean granitoid plutons.


2013 ◽  
Vol 718-720 ◽  
pp. 1872-1877 ◽  
Author(s):  
Xu Xi Chang ◽  
Xie Jian Ming ◽  
Jiang Ling Fa ◽  
Chen Shan Xiong

Currently, the soil-aggregate mixture has been widely used in some large-scale site preparation projects, compaction characteristics has been pay more attention by many engineers and researchers. However, systematic research is insufficient on how to choose the filler. Moreover, some industry regulations are different on the requirements about filler. This paper relies on a certain big site preparation projects, discussing statistical characteristics and correlation on the maximal grain size, contents of the coarse grain, gradation and other parameters of soil-aggregate mixture. The results show that the maximal and the median grain size have small discreteness and normal distribution, indicating site filler is easy to reach the requirement; The coefficient of curvature, coefficient of nonuniformity and the coarse grain content have large discreteness, and dont obey normal distribution, indicating the filler has large variability. The median grain size is highly relevant to the coarse grain content; the maximal grain size isnt relevant to the coefficient of nonuniformity, the coefficient of curvature and the coarse grain content. According to the results of correlation analysis, we suggest that the importance order follow by coarse grain content, the maximum grain size and gradation for the control parameters of filler. This research may be significant to other similar projects.


2010 ◽  
Vol 67 (6) ◽  
pp. 727-730 ◽  
Author(s):  
Leonardo Oliveira Medici ◽  
Hermes Soares da Rocha ◽  
Daniel Fonseca de Carvalho ◽  
Carlos Pimentel ◽  
Ricardo Antunes Azevedo

Despite the massive demand of water for plant irrigation, there are few devices being used in the automation of this process in agriculture. This work evaluates a simple controller to water plants automatically that can be set up with low cost commercial materials, which are large-scale produced. This controller is composed by a ceramic capsule used in common domestic water filters; a plastic tube around 1.5 m long, and a pressostate used in domestic washing machines. The capsule and the pressostate are connected through the tube so that all parts are filled with water. The ceramic capsule is the sensor of the controller and has to be placed into the plant substrate. The pressostate has to be placed below the sensor and the lower it is, the higher is the water tension to start the irrigation, since the lower is the pressostate the higher is the water column above it and, therefore, the higher is the tension inside the ceramic cup to pull up the water column. The controller was evaluated in the control of drip irrigation for small containers filled with commercial organic substrate or soil. Linear regressions explained the relationship between the position of pressostate and the maximum water tension in the commercial substrate (p < 0.0054) and soil (p < 0.0001). Among the positions of the pressostate from 0.30 to 0.90 m below the sensor, the water tension changed from 1 to 8 kPa for commercial substrate and 4 to 13 kPa for the soil. This simple controller can be useful to grow plants, applying water automatically in function of the water tension of the plant substrate.


Nano Letters ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 5919-5924 ◽  
Author(s):  
Zheyong Fan ◽  
Petri Hirvonen ◽  
Luiz Felipe C. Pereira ◽  
Mikko M. Ervasti ◽  
Ken R. Elder ◽  
...  

2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Vol 38 (1) ◽  
pp. 33-40
Author(s):  
Sreejita Chatterjee ◽  
Dhiren Kumar Ruidas

A significant event of marine transgression took place in Central India during Late Turonian-Coniacian. Fossiliferous marine succession of Bagh Group is one of the few carbonate successions exposed in peninsular India which was in focus of the current study for understanding this event. The signatures of this event were identified in the carbonate succession. The carbonates of Bagh Group are composed of two formations: the lower part is represented by Nodular limestone Formation which is overlain by Bryozoan limestone Formation at the top. On the basis of grain size variation and sedimentary structures, the Nodular limestone is divisible into three facies: facies ‘A’, facies ‘B’ and facies ‘C’. A hardground exists between facies B and facies C. Lack of sedimentary structures and high mud content indicates low energy depositional setting for the Nodular limestone Formation. Similarly, Bryozoan limestone Formation is divisible into five facies: facies ‘D’, facies ‘E’, facies ‘F’, facies ‘G’ and facies ‘H’ based on grain size variation and sedimentary structures. All of these five facies are fossiliferous. Glauconites are present within facies ‘G’ and have two modes of occurrence - as infilling within Bryozoan limestone and as altered feldspar. Presence of both small- and large-scale cross-stratification in Bryozoan limestone with lesser mud content are indicative of high energy shallow marine conditions. Large-scale cross-stratifications are possibly representing tidal bars while the small scale cross stratifications are formed in inter bar setting. Presence of reactivation surfaces within facies ‘E’ also supports their tidal origin. Increase in depositional energy condition is also evident from dominated by packstone facies.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


2021 ◽  
Author(s):  
◽  
Aitana Forcén-Vázquez

<p>Subantarctic New Zealand is an oceanographycally dynamic region with the Subtropical Front (STF) to the north and the Subantarctic Front (SAF) to the south. This thesis investigates the ocean structure of the Campbell Plateau and the surrounding New Zealand subantarctic, including the spatial, seasonal, interannual and longer term variability over the ocean properties, and their connection to atmospheric variability using a combination of in-situ oceanographic measurements and remote sensing data.  The spatial and seasonal oceanographic structure in the New Zealand subantarctic region was investigated by analysing ten high resolution Conductivity Temperature and Depth (CTD) datasets, sampled during oceanographic cruises from May 1998 to February 2013. Position of fronts, water mass structure and changes over the seasons show a complex structure around the Campbell Plateau combining the influence of subtropical and subantarctic waters.  The spatial and interannual variability on the Campbell Plateau was described by analysing approximately 70 low resolution CTD profiles collected each year in December between 2002 and 2009. Conservative temperature and absolute salinity profiles reveal high variability in the upper 200m of the water column and a homogeneous water column from 200 to 600m depth. Temperature variability of about 0.7 °C, on occasions between consecutive years, is observed down to 900m depth. The presence of Subantarctic Mode Water (SAMW) on the Campbell Plateau is confirmed and Antarctic Intermediate Water (AAIW) reported for the first time in the deeper regions around the edges of the plateau.  Long-term trends and variability over the Campbell Plateau were investigated by analysing satellite derived Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) time series. Links to large scale atmospheric processes are also explored through correlation with the Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). SST shows a strong seasonality and interannual variability which is linked to local winds, but no significant trend is found. The SLA over the Campbell Plateau has increased at a rate of 5.2 cm decade⁻¹ in the last two decades. The strong positive trend in SLA appears to be a combination of the response of the ocean to wind stress curl (Ekman pumping), thermal expansion and ocean mass redistribution via advection amongst others.  These results suggest that the variability on the Campbell Plateau is influenced by the interaction of the STF and the SAF. The STF influence reaches the limit of the SAF over the western Campbell Plateau and the SAF influence extends all around the plateau. Results also suggest different connections between the plateau with the surrounding oceans, e.g., along the northern edge with the Bounty Trough and via the southwest edge with the SAF. A significant correlation with SOI and little correlation with SAM suggest a stronger response to tropically driven processes in the long-term variability on the Campbell Plateau.  The results of this thesis provide a new definitive assessment of the circulation, water masses and variability of the Campbell Plateau on mean, annual, and interannual time scales which will support research in other disciplines such as palaeoceanography, fisheries management and climate.</p>


Sign in / Sign up

Export Citation Format

Share Document