scholarly journals Minor intrusions of peralkaline microsyenite in the Ilímaussaq alkaline complex, South Greenland

2001 ◽  
Vol 48 ◽  
pp. 9-29
Author(s):  
J. Rose Hansen ◽  
H. Sørensen

The agpaitic part of the Ilímaussaq alkaline complex, South Greenland, is made up of a roof zone, an intermediate zone and a floor zone. Dykes and sills of peralkaline microsyenite intersect the rocks of the roof and floor zones, but do not appear to intersect the lujavritic nepheline syenites which make up the intermediate zone. The microsyenites consist of Na-poor microcline, K-poor albite, aegirine and arfvedsonite which are practically identical to those of the agpaitic nepheline syenites of the complex. Neptunite and pectolite are the commonest minor minerals. The microsyenites are silica-saturated, –oversaturated, or, more rarely, undersaturated. The agpaitic part of the Ilímaussaq complex is considered to have been formed in a closed magma chamber; the lujavrites of the intermediate zone representing residual melts left after the consolidation of the roof and floor zones. That the microsyenite intrusions intersect the roof and floor zones but not the youngest lujavrites lying between these zones presents a geometrical problem which is discussed at some length. It is difficult to explain the microsyenites as products of fractionation or contamination of melts within the agpaitic magma chamber. Furthermore, the microsyenites differ mineralogically and chemically from the abundant microsyenitic dykes of the regional Tugtutôq-Ilímaussaq dyke swarm. It is therefore proposed that they originated in the source region which fed the agpaitic melts of the Ilímaussaq complex and that their emplacement in fractures was accompanied by a loss of volatiles and incompatible elements.

1996 ◽  
Vol 133 (5) ◽  
pp. 573-582 ◽  
Author(s):  
K. P. Skjerlie ◽  
H. Furnes

AbstractThe transition zone between 100 % dykes and high-level plutonic rocks of the Solund-Stavfjord Ophiolite Complex is complex due to the existence of many lithologies with different and variable contact relationships. The rocks of the plutonic complex vary in composition from FeTi basaltic to quartz dioritic, and the grain sizes vary from fine to pegmatitic. Felsic varieties are produced by fractional crystallization of basaltic magma as demonstrated by geochemical evolution and by gradual transition from gabbro to quartz diorite. Patches of fractionated dioritic rocks may show both gradual and intrusive relationships with the surrounding host gabbro. This demonstrates that late-stage liquids commonly left the source region and locally intruded the surrounding parent rocks. The high-level plutonic rocks are thoroughly epidotized and are cut by dykes consisting of granoblastic epidote and quartz. The high-level plutonic complex is associated with irregular bodies of fine- to medium-grained plagioclase-porphyritic diabase of high MgO content. These diabase bodies are intruded by dykes that become progressively more regular in shape. The plutonic complex locally shows intrusive relationships with the overlying 100% dyke complex, but is itself cut by two dyke swarms. The dykes of the first swarm formed while the plutonic complex experienced sinistral shear strain, and the dykes are generally less regular and thinner than the dykes of the second swarm. This indicates that the dykes of the first swarm intruded while the rocks of the plutonic complex were still hot, while the next dyke swarm intruded later when the rock complex was colder. Dykes of both swarms range in composition from slightly to strongly fractionated, suggesting that the magma chambers they were expelled from underwent significant fractionation in between magma replenishment. Numerous dykes of both swarms carry large quantities of glomeroporphyritic aggregates of plagioclase and altered clinopyroxene, indicating that the source area to the dykes very often was a crystal mush.


1995 ◽  
Vol 32 (3) ◽  
pp. 273-280 ◽  
Author(s):  
S. L. Kamo ◽  
T. E. Krogh ◽  
P. S. Kumarapeli

U–Pb baddeleyite and zircon ages for three diabase dykes from widely spaced localities within the Grenville dyke swarm indicate a single age of emplacement at [Formula: see text] Ma. The 700 km long Grenville dyke swarm, located in the southeastern part of the Canadian Shield, was emplaced syntectonically with the development of the Ottawa graben. This graben may represent a plume-generated lapetan failed arm that developed at the onset of the breakup of Laurentia. Other precisely dated lapetan rift-related units, such as the Callander Alkaline Complex and the Tibbit Hill Formation volcanic rocks, indicate a protracted 36 Ma period of rifting and magmatism prior to volcanism along this segment of the lapetan margin. The age of the Grenville dykes is the youngest in a progression of precisely dated mafic magmatic events from the 723 Ma Franklin dykes and sills to the 615 Ma Long Range dykes, along the northern and northeastern margins of Laurentia, respectively. Thus, the age for these dykes represents a key time marker for continental breakup that preceded the formation of the Iapetus ocean.


1983 ◽  
Vol 47 (344) ◽  
pp. 267-280 ◽  
Author(s):  
H. R. Rollinson

AbstractThe Archaean (c. 2800 Ma) ultramafic rocks in eastern Sierra Leone cut basalt lavas and are mostly olivine-rich cumulates either iron-rich (Fo85–86) and derived from a basaltic or picritic parent, or more magnesian (Fo92–93) derived from an ultramafic melt with c. 18–25 wt. % MgO. In central Sierra Leone the ultramafic rocks are lavas predating tholeiitic basalts.The basalts show a wide variation in Zr/Y, suggesting that garnet was present in the source region of some of these rocks but not others. This implies that melting took place at different depths in the mantle. The REE evidence for basaltic rocks in the upper part of the Nimini belt succession suggests that they were derived from a mantle source region which had already suffered melt extraction. Ti/Zr ratios in the basaltic rocks are also variable and individual belts define different trends on a Ti vs. Zr plot implying that the basaltic rocks evolved in geographically distinct magma chambers. It is likely that the basaltic rocks evolved from a parental liquid with Ti/Zr = 90 via shallow level crystal fractionation. The source region for these rocks therefore had a lower than chondritic Ti/Zr.There are two possible models for the basaltic and ultramafic magmas in the Sierra Leone greenstone belts. First that the ultramafic and basaltic liquids were derived from mantle diapirs of differing size, but originating in the same region of the mantle. Ultramafic liquids were produced in small diapirs, which store large melt fractions, and basaltic liquids in larger diapirs which segregate larger melt fractions. A second model is based upon the double diffusion process suggested for magma chambers at mid-ocean ridges and involves a transient magma chamber from which basalts, derived from parental ultramafic liquids, are erupted, with ultramafic liquids rising directly to the surface when the magma chamber is frozen. The available data does not discriminate between these two models.


1987 ◽  
Vol 77 (4) ◽  
pp. 325-347 ◽  
Author(s):  
C. M. B. Henderson ◽  
F. G. F. Gibb

ABSTRACTA 49 m complete section through the 288 Ma Lugar Sill obtained from drill cores can be subdivided into nine units. The uppermost four units are teschenitic and are mirror images of the bottom four. A 35 m thick central unit consists of theralite passing down into kaersutite theralite and then picrite. Marginal chilling 'of the units indicates multiple intrusion from the outside inwards. Olivine in the central unit (Fo88–90) encloses Cr-rich spinels and increases in amount inwards to over 50%. Clinopyroxene, kaersutite and biotite show symmetrically increasing Fe/Mg from the centre of the sill outwards. Most major and trace elements vary symmetrically throughout the sill with those in the central unit reflecting mainly olivine distribution but incompatible elements exhibit upward enrichment. Remarkably, the most-evolved rocks in the sill are at its margins. The sill was formed by multiple injections of successively less-evolved teschenitic magmas followed by a larger pulse of theralitic liquid carrying abundant olivine phenocrysts. The amount of olivine in this final pulse increased during emplacement. Subsequent in-situ differentiation in the central unit, with upward enrichment in residual liquid and volatiles, gave rise to lugarites. The various magmas were produced in a lower-level magma chamber by differentiation of a mantle-derived, alkali-rich picritic magma.


1989 ◽  
Vol 126 (5) ◽  
pp. 515-547 ◽  
Author(s):  
P. W. Francis ◽  
R. S. J. Sparks ◽  
C. J. Hawkesworth ◽  
R. S. Thorpe ◽  
D. M. Pyle ◽  
...  

AbstractAt least 2000 km3 of relatively uniform dacitic magma have been erupted from the Cerro Galan caldera complex, northwest Argentina. Between 7 and 4 Ma ago several composite volcanoes predominantly of dacitic lava were constructed, and several large high-K dacitic ignimbrites were erupted. 2.2 Ma ago the > 1000km3 Cerro Galan ignimbrite was erupted. The predominant mineral assemblage in the ignimbrites is plagioclase-biotite-quartz-magnetite-ilmenite; the Cerro Galan ignimbrite also contains sanidine. Fe-Ti oxide minerals in the Cerro Galan ignimbrite imply temperatures of 801–816 °C. Plagioclase phenocrysts in the ignimbrites typically have rather homogeneous cores surrounded by complex, often oscillatory zoned, rims. Core compositions show a marked bimodality, with one population consisting of calcic cores surrounded by normally zoned rims, and a second of sodic cores surrounded by reversely zoned rims. The older ignimbrites do not show systematic compositional zonation, but the Cerro Galan ignimbrite exhibits small variations in major elements (66–69% SiO2) and significant variations in Rb, Sr, Ba, Th and other trace elements, consistent with derivation from a weakly zoned magma chamber, in which limited fractional crystallization occurred. The ignimbrites have 87Sr/86Sr = 0.7108–0.7181; 143Nd/144Nd = 0.51215–0.51225, and δ18O = + 10 to + 12.5, consistent with a significant component of relatively non-radiogenic crust with high Rb/Sr and enriched in incompatible elements. Nd model ages for the source region are about 1.24 Ga. 87Sr/86Sr measurements of separated plagioclases indicate that Anrich cores have slightly lower 87Sr/86Sr than less calcic plagioclases, suggesting a small degree of isotopic heterogeniety in different components within the magmas. Pb isotope data for plagioclase show restricted ranges (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb = 18.87–18.92, 15.65–15.69 and 39.06–39.16 respectively), and suggest derivation from Proterozoic crustal material(> 1.5 Ga).Contemporaneous satellite scoria cones and lavas are high-K basalts, basaltic andesites and andesites with SiO2 = 51–57%; K2O = 2–3% and normative plagioclase compositions of An37–48, and may be derived from a mantle source containing both ‘subduction zone’ and ‘within plate’ components. 87Sr/86Sr ranges from 0.7055 to 0.7094 and 143Nd/144Nd from 0.51250 to 0.51290. Variation diagrams such as MgO: SiO2 show two trends, one indicating closed system fractional crystallization and the other crustal contamination. AFC modelling of the open system rocks indicates a parental mantle-derived mafic magma which is itself enriched in K, Rb, Ba, U, Ta/Sm, Ta/Th and Sr, and has 87Sr/86Sr = 0.705–0.706, while the contaminant need not be more radiogenic than the dacitic ignimbrites.The Cerro Galan dacitic magmas are interpreted in terms of a deep and uniform region of the central Andean continental crust repeatedly melted by emplacement of incompatible-element-enriched, mantle-derived mafic magmas, a proportion of which may also have mixed with the dacite magmas. A component of the crustal material had a Proterozoic age. The magmas derived by crustal melting were also enriched in incompatible elements either by crystal/liquid fractionation processes, or by metasomatism of their source regions just prior to magma generation. Much of the crystallization took place in the source region during the melting process or in mid-crustal magma chambers. The magmas may have re-equilibrated at shallow levels prior to eruption, but only limited compositional zonation developed in high-level magma chambers.


Author(s):  
John C. Bailey ◽  
Raymond Gwozdz ◽  
John Rose-Hansen ◽  
Henning Sørensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bailey, J. C., Gwozdz, R., Rose-Hansen, J., & Sørensen, H. (2001). Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 35-53. https://doi.org/10.34194/ggub.v190.5172 _______________ The Ilímaussaq alkaline complex is one of the latest members of the Mesoproterozoic Gardar igneous province. It was emplaced in three phases, (1) augite syenite, (2) alkali acid rocks and (3) the dominant agpaitic nepheline syenites. The immediate parent for the nepheline syenites is the augite syenite whose geochemical features, such as the low Zr/Nb ratio (3.7), match benmoreites from a nearby alkali basalt series. The agpaitic nepheline syenites are characterised by exceptionally high contents of Zr, Hf, Nb, Ta, REE, Th, U, Sn, Li, Be, Rb, Zn, Pb, Sb, W, Mo, As and Ga, and the volatile elements F, Cl, Br, I and S but exceptionally low levels of Ba, Sr, Co, Cu, Ni, Sc, V and Cr. Fractionation of cumulus phases with a distinctive geochemistry, such as sodalite (rich in Cl, Br, I, B), eudialyte (Zr, Hf, Nb, Ta, W, As) and arfvedsonite (Co, Sc, V, Cr), caused exhaustion of these elements in the residual magmas. The agpaitic magmas underwent extreme fractionation with the final lujavrite forming after 99% crystallisation of the augite syenite. Zirconium was apparently soluble in Ilímaussaq melts up to a concentration of c. 9000 ppm. Whole-rock analyses define a number of discrete Zr–U arrays which are restricted to certain intervals of the cumulate stratigraphy and are taken as evidence for liquid layering in the Ilímaussaq magma chamber. The distribution of the less common trace elements (Bi, Cd, Co, Ge, In, I, Hg, Sc, Se, V, W) and of the more abundant trace elements which failed to form minerals (Br, Cs, Ga, Hf, Rb, Sr) is summarised.


1991 ◽  
Vol 28 (10) ◽  
pp. 1653-1663 ◽  
Author(s):  
Roger H. Mitchell ◽  
R. Garth Platt ◽  
Maureen Downey ◽  
David G. Laderoute

A suite of alkaline lamprophyre dikes emplaced in centers I and II rocks of the Coldwell alkaline complex is composed of camptonites with calcite ocelli, camptonites with quartz macrocrysts, amphibole camptonites, monchiquites, and sannaites. The camptonites are characterized by phenocrysts of olivine, aluminian pyroxene, kaersutite, and titanian ferropargasite set in a matrix of magnesian hastingsite, augite, plagioclase, biotite, magnetite, sphene, and minor nepheline. Quartz macrocrysts occur as corroded euhedral single crystals. Monchiquites are petrographically similar to the camptonites but are characterized by the presence of an isotropic groundmass. Sannaites contain aluminian and chromian diopside phenocrysts set in a matrix of ferroan pargasite, aluminian diopside, biotite, albitized plagioclase, and epidotized alkali feldspar.Major-element compositions indicate the ocellar camptonites, amphibole camptonites, and monchiquites have affinities with alkali olivine basalt and that monchiquites and camptonites are heteromorphs. None of the dikes represent primitive liquids. Poor correlations between incompatible trace elements (Sr, Ba, Nb, Zr, rare earths), together with the presence of reversely zoned and corroded phenocrysts, suggest that none of the lamprophyres represent single batches of magma. The lamprophyres are considered to be hybrid magmas, formed by the mixing of fragmented cumulates, several generations of phenocrysts, and batches of magma extracted from a continuously replenished evolving magma chamber located within the infrastructure of the complex. Quartz-bearing camptonites are considered to form by contamination of camptonites, although the source of the quartz cannot be determined.


2014 ◽  
Vol 5 (6) ◽  
pp. 801-820 ◽  
Author(s):  
M.L. Renjith ◽  
S.N. Charan ◽  
D.V. Subbarao ◽  
E.V.S.S.K. Babu ◽  
V.B. Rajashekhar

Author(s):  
Richard W. Carlson ◽  
Lars E. Borg ◽  
Amy M. Gaffney ◽  
Maud Boyet

New Rb-Sr, 146,147 Sm- 142,143 Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147 Sm- 143 Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146 Sm/ 144 Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146 Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd— 142 Nd/ 144 Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga.


Sign in / Sign up

Export Citation Format

Share Document