scholarly journals Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

2021 ◽  
Vol 12 ◽  
pp. 257-269
Author(s):  
Cristiano Glessi ◽  
Aya Mahgoub ◽  
Cornelis W Hagen ◽  
Mats Tilset

Seven gold(I) N-heterocyclic carbene (NHC) complexes were synthesized, characterized, and identified as suitable precursors for focused electron beam-induced deposition (FEBID). Several variations on the core Au(NHC)X moiety were introduced, that is, variations of the NHC ring (imidazole or triazole), of the alkyl N-substituents (Me, Et, or iPr), and of the ancillary ligand X (Cl, Br, I, or CF3). The seven complexes were tested as FEBID precursors in an on-substrate custom setup. The effect of the substitutions on deposit composition and growth rate indicates that the most suitable organic ligand for the gold precursor is triazole-based, with the best deposit composition of 15 atom % gold, while the most suitable anionic ligand is the trifluoromethyl group, leading to a growth rate of 1 × 10−2 nm3/e−.

1997 ◽  
Vol 36 (Part 1, No. 12B) ◽  
pp. 7686-7690 ◽  
Author(s):  
Hiroshi Hiroshima ◽  
Masanori Komuro

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Stefan Wachter ◽  
Marco Gavagnin ◽  
Heinz D. Wanzenboeck ◽  
Mostafa M. Shawrav ◽  
Domagoj Belić ◽  
...  

AbstractThis work reports on focused electron beam induced deposition (FEBID) using a custom built gas injection system (GIS) equipped with nitrogen as a gas carrier. We have deposited cobalt from Co2(CO)8, which is usually achieved by a heated GIS. In contrast to a heated GIS, our strategy allows avoiding problems caused by eventual temperature gradients along the GIS. Moreover, the use of the gas carrier enables a high control over process conditions and consequently the properties of the synthesized nanostructures. Chemical composition and growth rate are investigated by energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM), respectively. We demonstrate that the N2 flux is strongly affecting the deposit growth rate without the need of heating the precursor in order to increase its vapour pressure. Particularly, AFM volume estimation of the deposited structures showed that increasing the nitrogen resulted in an enhanced deposition rate. The wide range of achievable precursor fluxes allowed to clearly distinguish between precursor- and electron-limited regime. With the carrier-based GIS an optimized deposition procedure with regards to the desired deposition regime has been enabled


2020 ◽  
Vol 11 ◽  
pp. 1789-1800
Author(s):  
Aya Mahgoub ◽  
Hang Lu ◽  
Rachel M Thorman ◽  
Konstantin Preradovic ◽  
Titel Jurca ◽  
...  

Two platinum precursors, Pt(CO)2Cl2 and Pt(CO)2Br2, were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe3. The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe3, as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO)2Cl2 compared to MeCpPtMe3. However, deposits made from Pt(CO)2Br2 show slightly less metal content and a lower growth rate compared to MeCpPtMe3. With both Pt(CO)2Cl2 and Pt(CO)2Br2, a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID.


Author(s):  
Konrad Rykaczewski ◽  
Ben White ◽  
Jenna Browning ◽  
Andrew D. Marshall ◽  
Andrei G. Fedorov

Adsorbed species surface diffusion Electron beam induced deposition (EBID) of residuals carbon can be either a contamination problem or can provide a basis for 3-D nanofabrication and nanoscale metrology. In this process a solid deposit is formed at the point of impact of the electron beam due to the decomposition of residual hydrocarbon species adsorbed on the solid substrate. The first observation of EBID can be traced to miscroscopists who noticed the growth of thin films of carbon while imaging using an electron microscope. The process was referred to as "contamination" because of its adverse effects on the microscope's imaging quality. Later, it has been demonstrated that with appropriate control of the electron beam this problematic contamination can be exploited to deposit three dimensional nanostructures with the spatial resolution down to 10nm. Numerous researchers have experimentally explored various factors influencing EBID growth rate and geometry of the deposit. To date, the most comprehensive theoretical model predicting the shape of the deposit in EBID is due to Silvis-Cividjian[1]. However, this model accounts for electron transport only. A few, fairly rudimentary models have also been developed for mass transport in EBID, but usually limited to rather simplistic treatment of electron transport. To this end, we have developed a comprehensive dynamic model of EBID coupling mass transport, electron transport and scattering, and species decomposition to predict deposition of carbon nano-dots. The simulations predict the local species and electron density distributions, as well as the 3-D profile and the growth rate of the deposit. Since the process occurs in a high vacuum environment surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. Transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo methods. Low energy secondary electrons (SE) are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The local SE flux at the substrate and at the free surface of the growing deposit is computed using the Fast Secondary Electron (FSE) model. When combined with the total dissociation reaction corssection and the local hydrocarbon surface concentration, this allows us to compute the local deposition rate. The deposition rates are then used to predict the shape profile evolution of the deposit. Simulation results are compared with an AFM imaging of carbon EBID.


1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.


2014 ◽  
Vol 23 (8) ◽  
pp. 088111 ◽  
Author(s):  
Jing-Yue Fang ◽  
Shi-Qiao Qin ◽  
Xue-Ao Zhang ◽  
Dong-Qing Liu ◽  
Sheng-Li Chang

2008 ◽  
Vol 14 (S2) ◽  
pp. 242-243
Author(s):  
P Kruit ◽  
W van Dorp ◽  
K Hagen ◽  
PA Crozier

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2018 ◽  
Vol 9 ◽  
pp. 1220-1227 ◽  
Author(s):  
Caspar Haverkamp ◽  
George Sarau ◽  
Mikhail N Polyakov ◽  
Ivo Utke ◽  
Marcos V Puydinger dos Santos ◽  
...  

A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID.


Sign in / Sign up

Export Citation Format

Share Document