scholarly journals New terpenoids from the fermentation broth of the edible mushroom Cyclocybe aegerita

2019 ◽  
Vol 15 ◽  
pp. 1000-1007 ◽  
Author(s):  
Frank Surup ◽  
Florian Hennicke ◽  
Nadine Sella ◽  
Maria Stroot ◽  
Steffen Bernecker ◽  
...  

The strophariaceous basidiomycete Cyclocybe aegerita (synonyms Agrocybe aegerita and A. cylindracea) is one of the most praised cultivated edible mushrooms and is being cultivated at large scale for food production. Furthermore, the fungus serves as a model organism to study fruiting body formation and the production of secondary metabolites during the life cycle of Basidiomycota. By studying the secondary metabolite profiles of C. aegerita, we found several terpenoids in submerged cultures. Aside from the main metabolite, bovistol (1), two new bovistol derivatives B and C (2, 3) and pasteurestin C as a new protoilludane (4) were isolated by preparative HPLC. Their structures were elucidated by mass spectrometry and NMR spectroscopy. The relative configurations of 2–4 were assigned by ROESY correlations, and 3 J H,H coupling constants in the case of 4. Applying quantitative PCR for gene expression validation, we linked the production of bovistol and its derivatives to the respective biosynthesis gene clusters.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1422
Author(s):  
Ousama Al Shanaa ◽  
Andrey Rumyantsev ◽  
Elena Sambuk ◽  
Marina Padkina

RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.


2001 ◽  
Vol 2 (4) ◽  
pp. 243-251
Author(s):  
Jo Wixon

We bring you a report from the CSHL Genome Sequencing and Biology Meeting, which has a long and prestigious history. This year there were sessions on large-scale sequencing and analysis, polymorphisms (covering discovery and technologies and mapping and analysis), comparative genomics of mammalian and model organism genomes, functional genomics and bioinformatics.


2021 ◽  
Author(s):  
Negar Memarian ◽  
Matthew Jessulat ◽  
Javad Alirezaie ◽  
Nadereh Mir-Rashed ◽  
Jianhua Xu ◽  
...  

Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.


Author(s):  
P. Indraja ◽  
M. Madhava ◽  
S. Satyam ◽  
P. R. Chandra ◽  
S. Joy Prince

Mushroom cultivation is one of the most important steps in diversification of agriculture. Milky mushroom (Calocybeindica) is a tropical edible mushroom, popular because of its good nutritive value and it can be cultivated commercially on large scale. Generally, by creating controlled environment in rooms mushroom cultivation is taken up, In traditional method  it is typical to manage the atmospheric temperature and humidity in desired range, which can be maintained easily in greenhouse by automatic control system.Cultivation of milky mushroom in greenhouse was taken up in controlled environment under three different conditions of controlled temperature and relative humidity (RH). The experimental conditions are 28°C and 79% RH, 24°C and 84% RH and 32°C and 72%RH. The yield obtained was found maximum at 24°C temperature and 84% relative humidity when compared with the other two greenhouse environment conditions. The yield from the mushroom cultivation under controlled environmental conditions in greenhouse was found to be high when compared with the conventional practice. It was concluded that, the mushroom cultivation yields high under controlled greenhouse conditions and also economical compared to the conventional method.


2020 ◽  
Author(s):  
Shengzhe Bian ◽  
Zeng Wenhong ◽  
Qiwen Li ◽  
Yinghui Li ◽  
Nai-Kei Wong ◽  
...  

AbstractCapsule-forming extracellular polysaccharides are crucial to bacterial host colonization, invasion, immune evasion and ultimately pathogenicity. Due to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important food-borne enteropathogen implicated in acute gastroenteritis, wound infections, and septic shock. Conventionally, the antigenic properties of lipopolysaccharide (LPS, O antigen) and capsular polysaccharide (CPS, K antigen) have provided a basis for serotyping V. parahaemolyticus, while disclosure of genetic elements encoding 13 O-serogroups have allowed molecular serotyping methods to be developed. However, the genetic structure of CPS loci for 71 K-serogroups has remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure and their evolutionary relationship of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We found a distinct pattern of CPS gene cluster across different K-serogroups, and expanded its new right-border by identifying glpX as a key gene conserved across all serotypes. A total of 217 genes involved in CPS biosynthesis were annotated. Functional contents and genetic structure of the 40 K-serogroups were analyzed. Based on inferences from species trees and gene trees, we proposed an evolution model of the CPS gene clusters of 40 K-serogroups. Horizontal gene transfer by recombination from other Vibrio species, gene duplication and nonsense mutations are likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. It is the first time, to the best of our knowledge, that a large-scale of CPS gene clusters of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus, and provide a framework for developing diagnostically relevant serotyping methods.Author summaryDue to warming ocean waters and human encroachment of coastal ecosystems, Vibrio parahaemolyticus has emerged as a globally important food-borne enteropathogen. However, the genetic structure of CPS loci for 71 K-serogroups V. parahaemolyticus have remained unidentified, limiting progress in understanding its roles in V. parahaemolyticus pathophysiology. In this study, we identified and characterized the genetic structure of CPS loci of 40 K-serogroups through whole genome sequencing of 443 V. parahaemolyticus strains. We expanded and identified its new right-border by identifying glpX as a key gene conserved across all serotypes. We proposed an evolution model of the CPS gene clusters of 40 K-serogroups. We also found horizontal gene transfer by recombination from other Vibrio species, gene duplication and nonsense mutations are likely to play instrumental roles in the evolution of CPS in V. parahaemolyticus. It is the first time, to the best of our knowledge, that a large-scale of CPS loci of different K-serogroups in V. parahaemolyticus have been identified and characterized in evolutionary contexts. This work should help advance understanding on the variation of CPS in V. parahaemolyticus, and provide a framework for developing diagnostically relevant serotyping methods.


Author(s):  
Rebecca Devine ◽  
Hannah McDonald ◽  
Zhiwei Qin ◽  
Corinne Arnold ◽  
Katie Noble ◽  
...  

AbstractThe formicamycins are promising antibiotics with potent activity against Gram-positive pathogens including VRE and MRSA and display a high barrier to selection of resistant isolates. They were first identified in Streptomyces formicae KY5, which produces the formicamycins at low levels on solid agar but not in liquid culture, thus hindering further investigation of these promising antibacterial compounds. We hypothesised that by understanding the organisation and regulation of the for biosynthetic gene cluster, we could rationally refactor the cluster to increase production levels. Here we report that the for biosynthetic gene cluster consists of 24 genes expressed on nine transcripts. Seven of these transcripts, including those containing all the major biosynthetic genes, are repressed by the MarR-regulator ForJ which also controls the expression of the ForGF two-component system that initiates biosynthesis. A third cluster-situated regulator, ForZ, autoregulates and controls production of the putative MFS transporter ForAA. Consistent with these findings, deletion of forJ increased formicamycin biosynthesis 5-fold, while over-expression of forGF in the ΔforJ background increased production 10-fold compared to the wild-type. De-repression by deleting forJ also switched on biosynthesis in liquid-culture and induced the production of two novel formicamycin congeners. By combining mutations in regulatory and biosynthetic genes, six new biosynthetic precursors with antibacterial activity were also isolated. This work demonstrates the power of synthetic biology for the rational redesign of antibiotic biosynthetic gene clusters both to engineer strains suitable for fermentation in large scale bioreactors and to generate new molecules.ImportanceAntimicrobial resistance is a growing threat as existing antibiotics become increasingly ineffective against drug resistant pathogens. Here we determine the transcriptional organisation and regulation of the gene cluster encoding biosynthesis of the formicamycins, promising new antibiotics with activity against drug resistant bacteria. By exploiting this knowledge, we construct stable mutant strains which over-produce these molecules in both liquid and solid culture whilst also making some new compound variants. This will facilitate large scale purification of these molecules for further study including in vivo experiments and the elucidation of their mechanism of action. Our work demonstrates that understanding the regulation of natural product biosynthetic pathways can enable rational improvement of the producing strains.


1994 ◽  
Vol 49 (9-10) ◽  
pp. 545-552 ◽  
Author(s):  
Dagmar Busmann

Abstract Several strains of basidiom ycetes were examined for their ability to transform α-and β-pinene in agitated submerged cultures. Four major metabolites of α-pinene (verbenol, verbenone, myrtenol, and trans-pinocarveol) and three main metabolites of β-pinene (1,4-cineol, myrtenol, and trans-pinocarveol) were isolated from the fermentation broth. The metabolic pathways included allylic oxidation, oxidative cleavage and further regioselective oxidation. Ganoderma applanatum was found to carry out the stereoselective allylic hydroxylation of α-pinene to verbenol, and of β-pinene to trans-pinocarveol in trans position to the C -C bridge. The optimal conditions of the bioreaction were established with respect to substrate concentration, incubation time and conversion time. Due to growth inhibition caused by elevated substrate concentration, the bioconversion of β-pinene required pre-grown cultures. Generally, mycelial pellet cultures were supplemented with the terpene substrate when a residual glucose content of 50% was reached. Depending on strain this point was reached after about 48 h. An incubation period of two to three days gave best yields. The transient accumulation of oxygenated products apparently reflected different reaction velocities of the successive catabolic steps.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1202
Author(s):  
Bello Sani Haliru ◽  
Mohd Y. Rafii ◽  
Norida Mazlan ◽  
Shairul Izan Ramlee ◽  
Isma’ila Muhammad ◽  
...  

Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tao Jing ◽  
Dengbo Zhou ◽  
Miaoyi Zhang ◽  
Tianyan Yun ◽  
Dengfeng Qi ◽  
...  

Banana is a key staple food and fruit in countries all over the world. However, the development of the global banana industry is seriously threatened by Fusarium wilt disease, which is caused by Fusarium oxysporum f. sp. cubense (Foc). In particular, Foc tropical race 4 (Foc TR4) could infect more than 80% of global banana and plantain crops. Until now, there were no commercial chemicals or resistant cultivars available to control the disease. Biological control using actinomycetes is considered a promising strategy. In this study, 88 actinomycetes were isolated from a banana orchard without symptoms of Fusarium wilt disease for more than 10 years. An actinobacterial strain labeled as JBS5-6 has exhibited strong antifungal activities against Foc TR4 and other selected 10 phytopathogenic fungi. Based on phenotypic and biochemical traits as well as complete genome analysis, strain JBS5-6 was assigned to Streptomyces violaceusniger. Extracts of the strain inhibited the mycelial growth and spore germination of Foc TR4 by destroying membrane integrity and the ultrastructure of cells. The complete genome of strain JBS5-6 was sequenced and revealed a number of key function gene clusters that contribute to the biosynthesis of active secondary metabolites. Sixteen chemical compounds were further identified by gas chromatography-mass spectrometry (GC-MS). 5-hydroxymethyl-2-furancarboxaldehyde was one of the dominant components in strain JBS5-6 extracts. Moreover, fermentation broth of strain JBS5-6 significantly reduced the disease index of banana seedlings by inhibiting the infection of Foc TR4 in a pot experiment. Hence, strain JBS5-6 is a potential biocontrol agent for the management of disease and the exploitation of biofertilizer.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 72 ◽  
Author(s):  
Ji Ong ◽  
Hui Goh ◽  
Swee Lim ◽  
Li Pang ◽  
Joyce Chin ◽  
...  

With 70% of the Earth’s surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document