scholarly journals Iodine-catalyzed electrophilic substitution of indoles: Synthesis of (un)symmetrical diindolylmethanes with a quaternary carbon center

2021 ◽  
Vol 17 ◽  
pp. 1464-1475
Author(s):  
Thanigaimalai Pillaiyar ◽  
Masoud Sedaghati ◽  
Andhika B. Mahardhika ◽  
Lukas L. Wendt ◽  
Christa E. Müller

A novel, versatile approach for the synthesis of unsymmetrical 3,3'-diindolylmethanes (DIMs) with a quaternary carbon center has been developed via iodine-catalyzed coupling of trifluoromethyl(indolyl)phenylmethanols with indoles. In contrast to previously reported methods, the new procedure is characterized by chemoselectivity, mild conditions, high yields, and scalability to obtain gram amounts for biological studies. Selected compounds were found to display affinity for cannabinoid receptors, which are promising drug targets for the treatment of inflammatory and neurodegenerative diseases.

RSC Advances ◽  
2014 ◽  
Vol 4 (39) ◽  
pp. 20346-20350 ◽  
Author(s):  
Minghua Li ◽  
Nan Ji ◽  
Ting Lan ◽  
Wei He ◽  
Rui Liu

The catalytic enantioselective aza-Henry reaction of N-Boc aldimines 2 and 2-nitropropionic acid ethyl ester 3 in mixed solvents were catalyzed by cinchona quaternary ammonium salts to form a new quaternary carbon center. High yields (up to 90%), excellent enantioselectivities (up to 99% ee) and diastereoselectivities ratio (up to 22 : 1) were successfully obtained with mild conditions.


2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


2021 ◽  
Author(s):  
Yan Wu ◽  
Jin-Yang Chen ◽  
Jing Ning ◽  
Xue Jiang ◽  
Jie Deng ◽  
...  

An electrochemical multicomponent reaction was established under catalyst-, chemical-oxidant-free and mild conditions, which provides an eco-friendly and simple protocol for constructing 4-selanylpyrazoles from easily available raw materials with high yields.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4998
Author(s):  
Hitesh Chopra ◽  
Protity Shuvra Dey ◽  
Debashrita Das ◽  
Tanima Bhattacharya ◽  
Muddaser Shah ◽  
...  

Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.


Synlett ◽  
2018 ◽  
Vol 29 (11) ◽  
pp. 1465-1468 ◽  
Author(s):  
Tomohiro Maegawa ◽  
Yasuyoshi Miki ◽  
Ryohei Oishi ◽  
Kazutoshi Segi ◽  
Hiromi Hamamoto ◽  
...  

We developed a Beckmann rearrangement employing hypervalent iodine reagent under mild conditions. The reaction of ketoxime with hypervalent iodine afforded the corresponding ketone, but premixing of hypervalent iodine and a Lewis acid was effective for promoting Beckmann rearrangement. Aromatic and aliphatic ketoximes were converted into their corresponding amides in good to high yields.


2020 ◽  
Author(s):  
Claudia Bauer ◽  
Aisling Minard ◽  
Isabelle Pickles ◽  
Matthew Burnham ◽  
Nikil Kapur ◽  
...  

TRPC1/4/5 cation channels are emerging drug targets for the treatment of, amongst others, central nervous system (CNS) disorders, kidney disease, and cardiovascular and metabolic disease. Various small-molecule TRPC1/4/5 modulators have been reported, including highly potent xanthine derivatives that can distinguish between specific TRPC1/4/5 tetramers. However, there is a paucity of information about their binding mode, which limits the ability to develop them further as chemical probes of specific TRPC1/4/5 channels for use in fundamental biological studies and drug discovery programmes. Here, we report the development of a set of potent xanthine-based photoaffinity probes that functionally mimic the xanthines Pico145 and AM237, respectively. Using these probes, we have developed a quantitative photoaffinity labelling protocol for TRPC5 channels. Our results provide the first direct evidence that xanthines modulate TRPC5 channels through a direct binding interaction with TRPC5 protein, and the first quantitative method for the assessment of binding interactions of TRPC5 and small molecules. Our method may allow the study of the mode-of-action of other TRPC1/4/5 modulators, and the identification of small molecule binding sites of TRPC1/4/5 channels.


Synlett ◽  
2020 ◽  
Author(s):  
Chuan Wang ◽  
Zhiyang Lin ◽  
Yun Lan

We report a reductive allylic defluorinative reaction of α-trifluoromethyl alkenes with terminal epoxides, which consists of an iodide-mediated regioselective ring opening and a nickel-catalyzed radical-type cross-coupling, providing diverse tertiary gem-difluorobishomoallylic alcohols in moderate to high yields. Notably, this reaction is conducted under mild conditions and requires no external ligand or proton donor.


Synlett ◽  
2019 ◽  
Vol 30 (08) ◽  
pp. 972-976 ◽  
Author(s):  
Tomohiko Shirai ◽  
Kazuki Sugimoto ◽  
Masaya Iwasaki ◽  
Ryuki Sumida ◽  
Harunori Fujita ◽  
...  

We report the decarbonylation of aldehydes through an aldehydic C–H bond cleavage catalyzed by a cationic iridium/bisphosphine catalyst. The reaction proceeds under relatively mild conditions to give the corresponding hydrocarbon products in moderate to high yields. In addition, this cationic iridium catalyst system can be applied to an asymmetric hydroacylation of ketones.


2018 ◽  
Vol 42 (12) ◽  
pp. 614-617
Author(s):  
Soumia Belkharchach ◽  
Hanane Elayadi ◽  
Hana Ighachane ◽  
Said Sebti ◽  
Mustapha Ait Ali ◽  
...  

2-Substituted benzimidazoles are selectively synthesised in high yields via the condensation of o-phenylenediamine derivatives with aldehyde derivatives using catalytic amount of p-toluenesulfonic acid coated natural phosphate (NP/PTSA) under mild conditions. The use of NP/PTSA as a reusable catalyst makes this process simple, convenient, and environmentally friendly.


2004 ◽  
Vol 165 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Laura Korhonen ◽  
Dan Lindholm

The ubiquitin proteasome system (UPS) contributes to the pathophysiology of neurodegenerative diseases, and it is also a major determinant of synaptic protein degradation and activity. Recent studies in rodents and in the fruit fly Drosophila have shown that the activity of the UPS is involved in axonal degeneration. Increased knowledge of the UPS in synaptic and axonal reactions may provide novel drug targets for treatments of neuronal injuries and neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document