scholarly journals Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4998
Author(s):  
Hitesh Chopra ◽  
Protity Shuvra Dey ◽  
Debashrita Das ◽  
Tanima Bhattacharya ◽  
Muddaser Shah ◽  
...  

Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.

2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1609
Author(s):  
Lutfun Nahar ◽  
Shaymaa Al-Majmaie ◽  
Afaf Al-Groshi ◽  
Azhar Rasul ◽  
Satyajit D. Sarker

Dihydrofuranocoumarin, chalepin (1) and furanocoumarin, chalepensin (2) are 3-prenylated bioactive coumarins, first isolated from the well-known medicinal plant Ruta chalepensis L. (Fam: Rutaceae) but also distributed in various species of the genera Boenminghausenia, Clausena and Ruta. The distribution of these compounds appears to be restricted to the plants of the family Rutaceae. To date, there have been a considerable number of bioactivity studies performed on coumarins 1 and 2, which include their anticancer, antidiabetic, antifertility, antimicrobial, antiplatelet aggregation, antiprotozoal, antiviral and calcium antagonistic properties. This review article presents a critical appraisal of publications on bioactivity of these 3-prenylated coumarins in the light of their feasibility as novel therapeutic agents and investigate their natural distribution in the plant kingdom, as well as a plausible biosynthetic route.


2016 ◽  
Vol 115 (7) ◽  
pp. 2637-2645 ◽  
Author(s):  
Ahmad K. Dyab ◽  
Doaa A. Yones ◽  
Zedan Z. Ibraheim ◽  
Tasneem M. Hassan

2021 ◽  
Author(s):  
Adrieli Sachett ◽  
Matheus Gallas-Lopes ◽  
Radharani Benvenutti ◽  
Matheus Marcon ◽  
Amanda M Linazzi ◽  
...  

Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce the mean particle diameter and improve this compound bioavailability and therapeutic potential. In this study, we compared the behavioral (in the open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, i.p.) and micronized curcumin (MC, 10 mg/kg, i.p.) in adult zebrafish subjected to 90-minute acute restraint stress (ARS). ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior in the OTT. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we suppose that curcumin does not have anti-stress effects on the ARS in zebrafish.


2020 ◽  
Author(s):  
Mallikarjuna Nimgampalle ◽  
Vasudharani Devanthan ◽  
Ambrish Saxena

Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities’ world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time we have screened some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through <i>in silico</i>approaches. For the purpose of the study, we have selected some essential viral proteins and enzymes implicated in SARS-CoV-2 replication and multiplication as putative drug targets.<br>


2020 ◽  
pp. 1-11
Author(s):  
Xi-jun Wang ◽  
Shi Qiu ◽  
Aihua Zhang ◽  
Jian-hua Miao ◽  
Hui Sun ◽  
...  

The incidence of neurological disorders is growing in the world together with an increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathology, which make necessary to search for new therapeutic agents. Natural products, most of them used in phytochemicals from herbal medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Numerous herbs have been applied to neurodegenerative disease treatments as complementary and alternative medicines. In the 21st century, omics-coupled functional pharmacology was developed for neurodegenerative drug discovery from natural products. In this article, we firstly provide the latest understanding of neurological disorders on risk factors, category, diagnosis and treatment, and then specially present an overview of natural products in neuroprotective effects research from chemical biology to pharmacological targets, and also discuss the natural products application and future challenge.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Lijuan Li ◽  
Lixia An ◽  
Lifang Li ◽  
Yongjuan Zhao

Sphingolipids are formed via the metabolism of sphingomyelin, aconstituent of the plasma membrane, or by denovosynthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in in?ammation. This can involve, for example, activation of pro-in?ammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-in?ammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-af?nity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on in?ammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in in?ammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and in?ammatory bowel disease, which involve important in?ammatory components. A signi?cant body of research now indicates that sphingolipids are intimately involved in the in?ammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological in?ammation.


2013 ◽  
Vol 6 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Daniela Košťálová ◽  
Lýdia Bezáková ◽  
Lucia Račkovác ◽  
Silvia Mošovská ◽  
Ernest Šturdík

Abstract Extensive research over the past half century has shown that curcumin (diferuloylmethane), a polyphenolic compound of turmeric (Curcuma longa L.), can modulate multiple cell signaling pathways. Extensive clinical trials have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in human. Curcumin, known for thousand years as a subject of Ayurvedic medicine, has undergone in recent times remarkable transformation into a drug candidate with prospective multipotent therapeutic application. Characterized by high chemical reactivity, resulting from an extended conjugated double bond system prone to nucleophilic attack, curcumin has been shown to interact with a plethora of molecular targets, in numerous experimental observations. In clinical trials, has been used either alone or in combination with other agent. However, its clinical advance has been limited by its short biological half-life, fast metabolism and poor systemic bioavailability after oral administration. To mitigate the above limitations, recently various formulation of curcumin, including nanoparticles, micelles, liposomes, phytosomes delivery system has been examined. The present review has been devoted towards better understanding of the phytonutraceutic properties of curcumin and turmeric based on their disease specific indications and enhancing their prophylactic and therapeutic nutraceutical qualities. The article deals with the biological activity, mode of action, toxicity and forthcoming application of these leads.


Sign in / Sign up

Export Citation Format

Share Document