scholarly journals Electrospinning of ampicillin trihydrate loaded PLA nanofibers: effect of drug concentration and PLGA addition on its morphology, drug delivery and mechanical properties

2021 ◽  
Author(s):  
Tuğba Eren Böncü ◽  
Nurten Ozdemir

The aim of the study is to produce ampicillin trihydrate loaded PLA and PLA/PLGA polymeric nanofibers using HFIP as solvent via electrospinning. The effect of ampicillin trihydrate concentration (4-12%), the addition of PLGA and the amount of added PLGA (20-80%) on the spinnability of the solutions and morphology, average nanofiber diameter, encapsulation efficiency, in vitro drug release and mechanical properties of PLA and PLA/PLGA nanofibers were examined. All nanofibers have shown to have favorable encapsulation efficiency and mechanical properties. As the amount of ampicillin trihydrate increased and PLGA was added, nanofiber diameter increased while mechanical properties decreased. However, as the amount of added PLGA increased, a decrease in nanofiber diameter was observed. The increase in the drug amount caused an increase in the burst effect. The ideal drug concentration was determined to be 8% (F2), as it allows the prolonged and controlled drug release for up to 10 days. While in vitro drug release decreased with the addition of PLGA to PLA, it increased with the increasement of added PLGA to PLA. As a result of the study, it was concluded that the amount of the drug and the added PLGA concentration may affect the average nanofiber diameter, morphology, in vitro drug release and mechanical properties of the obtained electrospun PLA nanofibers.

Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
EB Onuigbo ◽  
C Anozie-Ikeanyi ◽  
NE Edeh ◽  
CO Eze ◽  
TH Gugu

The study seeks to evaluate nanoparticles based on chitosan for enhanced delivery of ampicillin in plasmid-mediated drug resistance. Serial dilutions of a mixed population of E. coli was plated on nutrient agar and streaked on Replica-plate 25 random colonies using MacConkey agar with or without ampicillin (100 µg/ml) daily for 96 h. Nanoparticles were prepared by cross-linking chitosan with sodium tripolyphosphate with ampicillin trihydrate adsorbed. Three different batches were prepared for optimization. The nanoparticles were optimized based on encapsulation efficiency, in vitro drug release, pH stability and microbiological assay using two laboratory strains of E. coli. Increased resistance to ampicillin due to possible plasmid transfer was established in vitro after 96 h. The encapsulation efficiency of the three batches was between 21-57 %. The drug release showed a burst effect and slow extended release over 8 h and reached a peak of about 19 % release at the 6 and 7 h in Batch A, B and C. The pH of the particles was stable over a period of 6 d. The nanoparticles containing only 0.075 mg of ampicillin dropped in an agar well plate inoculated with 1 ml of E. coli J62 lac pro trp hispFlac::Tn3 (AmpR) gave an IZD of ≥ 25 mm. Chitosan nanoparticles holds good potentials in potentiating the antibacterial effect of ampicillin against possible plasmid-mediated drug resistance


2019 ◽  
Vol 11 (2) ◽  
pp. 142-153
Author(s):  
Rutuja V. Deshmukh ◽  
Pavan Paraskar ◽  
S. Mishra ◽  
Jitendra Naik

Background: Nateglinide is an antidiabetic drug having biological half-life 1.5 h which shows a concise effect. Graphene oxide along with chitosan can be used as a nanocarrier for sustained release of Nateglinide. Objective: To develop Nateglinide loaded graphene oxide-chitosan nanocomposites and to evaluate for different characterization studies. Methods: Graphene Oxide (GO) was synthesized by improved hummer’s method and drug-loaded Graphene oxide - chitosan nanocomposites were prepared. Box Behnken design was used to carry out experiments. The nanocomposites were characterized for encapsulation efficiency and drug release. Morphology was studied using field emission scanning electron microscope and transmission electron microscope. An interaction between drug, polymer and GO was investigated by Fourier transform infrared spectroscopy and X-ray diffractometer along with in vitro drug release study. Results: The statistical evaluation of the design showed linear and quadratic models which are significant models for encapsulation efficiency (R1 0.6883, 0.9473) and drug loading (R2 0.6785, 0.9336), respectively. Fourier transform infrared spectroscopy showed the compatibility of GO, Chitosan and Nateglinide. X-ray diffractometer reveals the change in degree of crystallinity of drug. FE-SEM and TEM images confirmed the distribution of the drug within the nanocomposites. Design expert reveals that the concentration of GO has great influence on encapsulation efficiency. In Vitro drug release showed the sustained release of drug over the period of 12 h. Conclusion: GO-Chitosan nanocomposites can be used as a sustained release carrier system for Nateglinide to reduce dose frequency of drug as well as its probable side effects.


2020 ◽  
Vol 11 (9) ◽  
pp. 557-571 ◽  
Author(s):  
Narendra ◽  
Abhishesh Kumar Mehata ◽  
Matte Kasi Viswanadh ◽  
Roshan Sonkar ◽  
Datta Maroti Pawde ◽  
...  

Aim: This work focused on the development of transferrin-conjugated theranostic liposomes consisting of docetaxel (DXL) and upconversion nanoparticles for the diagnosis and treatment of gliomas. Materials & methods: Upconversion nanoparticles and docetaxel-loaded theranostic liposomes were prepared by a solvent injection method. Formulations were analyzed for physicochemical properties, encapsulation efficiency, drug release, elemental analysis, cytotoxicity and fluorescence. Results: The particle size was around 200 nm with spherical morphology and an encapsulation efficiency of up to 75.93%, was achieved for liposomes with an in vitro drug release of 71.10%. The IC50 values demonstrated enhanced cytotoxicity on C6 glioma cells with targeted liposomes in comparison with nontargeted liposomes. Conclusion: Prepared theranostic liposomes may be promising for clinical validation after an in vitro and in vivo evaluation on cell lines and animals, respectively.


2020 ◽  
Vol 10 (4) ◽  
pp. 5860-5868

Present investigation is continuation of author’s previously published work. In the present investigation, the author has prepared neem gum-chitosan and kheri gum-chitosan polyelectrolyte complex transdermal film for the delivery of protein/peptide drug. Concentration of gum (neem gum and kheri gum) and chitosan was varied in each concentration while drug concentration kept constant. Albumin was used as a model protein drug. Transdermal films were fabricated using a solvent casting method without using any plasticizer and evaluated for various parameters viz. folding endurance, surface pH, weight variation, drug content, percentage moisture content, surface morphology, in vitro drug release and ex vivo drug permeation study. The study showed that films were successfully fabricated with good acceptable physical properties. In vitro drug release study and ex vivo drug permeation study showed that polyelectrolyte films were able to extend drug delivery up to 9 days. It can be easily concluded from the findings of the results that neem gum-chitosan and kheri gum-chitosan polyelectrolyte complex films can be easily prepared without using any plasticizer and able to deliver protein/peptide therapeutic agents for an extended period of time.


Author(s):  
Faten Ibraheem Alatraqchi ◽  
Fatima J. AL Gawhri

The aim of the present study is to formulate floating effervescent microsponge tablet of the narrow absorption window drug, Baclofen (BFN) for controlling drug release and thereby decrease the side effect of the drug. The microsponges of BFN were prepared by non-aqueous emulsion solvent diffusion method (oil in oil emulsion method). The effects of drug: polymer ratio, stirring time and type of Eudragit polymer  on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selected microsponge formula was incorporated into the floating effervescent gastro-retentive tablet. The prepared floating microsponge tablet was evaluated for tablet hardness, friability, swelling in addition to in vitro drug release. The results showed that the microsponge formula with Eudragit RS100 had optimum physical properties and controlled drug release (75% of drug release in 8 hr.) when compared with other formulas and pure baclofen. The oil in oil emulsion method is a promising method to produce baclofen microsponge.                                                                                  


2021 ◽  
Vol 7 (2) ◽  
pp. 692-695
Author(s):  
Thomas Eickner ◽  
Michael Teske ◽  
Natalia Rekowska ◽  
Volkmar Senz ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract For the investigation of in vitro drug release, methods have been used in which samples of drug delivery systems are immersed in release medium. The medium is used to measure drug concentration via chromatography or photometry. These systems are suitable to investigate the drug release of different systems or to simulate tissue environments. When considering predominantly humid regions, e.g. for drug release into the cochlea through the round window membrane by a drug delivery system placed at that membrane, reproducible in vitro determination of drug release becomes particularly challenging. In this study the development of a system is reported that allows the investigation of the in vitro drug release simulating such conditions. The presented test system consists of an alginate hydrogel in glass vials simulating the biological membrane, which separates the drug delivery system from the medium filled compartment. Saline is used as release medium and injected under the hydrogel. The samples are placed on top of the hydrogel, which slightly contacts the medium surface. The drug concentration in the release medium was determined by HPLC measurements. This system allows for testing the release of dexamethasone without the samples being completely surrounded by medium. The hydrogel mediates the diffusion of the drug by ensuring the contact with the medium. Release was monitored for more than 23 days. The presented concept was successfully designed and manufactured. The system is inexpensive and can be duplicated easily. In this study, it was used to monitor the drug release of dexamethasone from PEGDA700 derived polymer. One challenge that remains to be considered is the low mechanical stability of the hydrogel, which results in a need for repeated manufacturing during the handling of the system.


2007 ◽  
Vol 25 (4) ◽  
pp. 689-693 ◽  
Author(s):  
Cheng-Sheng Liu ◽  
Kashappa Goud H. Desai ◽  
Xiang-Hong Meng ◽  
Xi-Guang Chen

2022 ◽  
pp. 088532822110640
Author(s):  
Shengtang Li ◽  
Xuewen Shi ◽  
Bo Xu ◽  
Jian Wang ◽  
Peng Li ◽  
...  

Currently, the treatment of osteomyelitis poses a great challenge to clinical orthopedics. The use of biodegradable materials combined with antibiotics provides a completely new option for the treatment of osteomyelitis. In this study, vancomycin hydrochloride (VANCO) loaded poly (lactic-co-glycolic acid) (PLGA) microspheres were prepared by a double emulsion solvent evaporation method, and the in vitro drug release behaviors of the drug loaded microspheres were explored after coating with different concentrations of silk fibroin (SF). Drug loading, encapsulation efficiency, Scanning electron microscopy, particle size analysis, Fourier transform infrared spectroscopy, hydrophilicity, in vitro drug release, and in vitro antibacterial activity were evaluated. The results showed that the drug loading of vancomycin loaded PLGA microspheres was (24.11 ±1.72)%, and the encapsulation efficiency was (48.21 ±3.44)%. The in vitro drug release indicated that the drug loaded microspheres showed an obvious initial burst release, and the drug loaded microspheres coated with SF could alleviate the initial burst release in varying degrees. It also can reduce the amount of cumulative drug release, and the effect of microspheres coated with 0.1% concentration of SF is the best. The time of in vitro drug release in different groups of drug loaded microspheres can be up to 28 days. The microspheres coated with (0.1%SF) or without (0%SF) SF showed a cumulative release of (82.50±3.51)% and (67.70±3.81)%,respectively. Therefore, the surface coating with SF of vancomycin loaded microspheres can alleviate the initial burst release, reduce the cumulative drug release, potentially prolong the drug action time, and improve the anti-infection effect.


Sign in / Sign up

Export Citation Format

Share Document