scholarly journals SIMULATION OF NATURAL OSCILLATIONS OF THE AIR ASSAULT RAPPELLING SYSTEM “KANAT-1”

Author(s):  
O. Akimov ◽  
V. Dmytriiev ◽  
V. Boiarov ◽  
V. Fedenko

The main purpose of the article is to consider the simulation of the natural oscillations of the air assault rappelling system “Kanat-1”. The object of consideration is a set of removable onboard equipment for rappelling air assault "Kanat-1" for landing from the cargo hatch of Mi-8 helicopters. Air assault rappelling system is an oscillating system that has certain natural frequencies of oscillation of the item, which depend on the number of paratroopers on the rope and their placement on it. The airframe of the Mi-8 helicopter has its own frequencies within the ranges of 3.1 - 3.3; 8 - 9; 15 - 17 Hz with which, and their divisibles the natural frequencies of the item should not coincide. In real operating conditions, determining the natural frequencies of the elements of the item under load is problematic. A system of dynamic models is built which allows determining the natural frequencies of air assault rappelling system oscillations at arbitrary placement of up to three paratroopers weighing up to 140 kg each, which can be hung simultaneously on one of the ropes in constant motion while moving the points of contact with the rope. In general, at the maximum load on the rope (three paratroopers), the mathematical model represents a system of three second-order differential equations. Eight variants for loading the rope with paratroopers are considered. The obtained oscillation frequencies of the air assault rappelling system do not coincide with the oscillation frequencies of the helicopter airframe which proves the effectivity of the air assault rappelling system. Recommendations for regulation of frequency characteristics of air assault rappelling system by replacement of a fastening element of a rope to a traverse are developed.

Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Yu Mizobe

We focused on vibration characteristics of reciprocating compressors and constructed the mathematical model to calculate the natural frequencies and modes for crank angles and proposed a method to estimate the degree and the suspicious portion of failure by difference of temporal parameter values obtained using measuring data in operation and the mathematical model. In this paper, according to the proposed method, a case study is carried out using the field data, where the data were acquired before and after the failures occurred in the connecting parts of connecting rod, to prospect the difference between each parameter value for two operating states. Inspecting resonant characteristics each in the frequency response data relating to the natural frequencies for bending modes of the piston rod, we determined two resonant frequencies, which could correspond to the 1st and 2nd mode about bending of the piston rod. To equate the calculated each natural frequency from eigen value analysis based on the proposed model with each resonant frequency, we define the error function for the identified problem, namely optimum problem. In the identified results, it is found that some parameter values have much difference and the corresponding failure could occur around the connecting rod. We could show the possibility to detect both the change of the parameter values and the deterioration parts for two different kinds of the operating states by our proposed method.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


2013 ◽  
Vol 390 ◽  
pp. 242-245 ◽  
Author(s):  
Alexander V. Chekanin

The article deals with the actual problem of improving the accuracy of determining the dynamic characteristics of beam structures. To solve such problems the displacement method is used. Defining matrices are calculated with the Godunovs scheme. Numerical solutions in this case can be obtained practically with any accuracy within accepted hypotheses of the mathematical model of the calculated object. This suggests that the resulting solutions are standard. The examples of determining the natural frequencies of vibrations of beam structures that demonstrate an extremely high accuracy of the proposed algorithm are given.


2012 ◽  
Vol 220-223 ◽  
pp. 952-957
Author(s):  
Chen Liu ◽  
Xiao Yan Liu

From the view of engineering, based on expatiating the features of systems biology, the paper discusses the workflows and the research emphasis of systems biology. It also explains how to model and analyze the dynamic process of signal transmitting network for a biological system by an example. Based on the complexity and uncertainty of the mathematical model, the right methods are chosen to realize the effective estimation of state variables and model parameters for the biochemical pathway.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


Author(s):  
Dmitriy V. Guzei ◽  
Andrey V. Minakov ◽  
Vasiliy I. Panteleev ◽  
Maksim I. Pryazhnikov ◽  
Dmitriy V. Platonov ◽  
...  

The mathematical model of heat and mass transfer processes in the combustion chamber of diesel generator units with valve inductor generators has been developed. The mathematical model takes into account the actual geometry of the combustion chamber and the operating conditions of the diesel engine. A study of the main characteristics of a diesel generator in a wide range of modes of operation has been carried out. In addition to energy characteristics, environmental parameters have been considered


1979 ◽  
Vol 21 (6) ◽  
pp. 389-396 ◽  
Author(s):  
G. T. S. Done

This paper is concerned with the problem of adjusting the mathematical model of a system such that the computed natural frequencies coincide with those measured experimentally. The particular system considered is a laboratory turbine-rotor model, modelled mathematically by 42 Timoshenko beam elements and lumped masses. Model adjustments are made by assuming, firstly, Young's modulus and the modulus of rigidity to be variable, a change from standard values representing overall stiffness deficiencies in the mathematical model. In this case, a best fit to the lowest six natural frequencies, as measured experimentally, is made. Secondly, stiffness diameters are assumed variable, thereby allowing for deficiencies in the model near discontinuous changes of section, and in this case, the lowest six natural frequencies are matched exactly, but an overall measure of the differences between the actual and the stiffness diameters is minimized. An analysis for the rates of change of natural frequency with the various stiffness properties (i.e. the sensitivities) is presented, and the results of the manipulation discussed.


Robotica ◽  
2017 ◽  
Vol 36 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Siamak Pedrammehr ◽  
Behzad Danaei ◽  
Hamid Abdi ◽  
Mehdi Tale Masouleh ◽  
Saeid Nahavandi

SUMMARYIn this study, the kinematics and dynamics of a six-degree-of-freedom parallel manipulator, known as Hexarot, are evaluated. Hexarot is classified under axis-symmetric robotic mechanisms. The manipulator comprises a cylindrical base column and six actuated upper arms, which are connected to a platform through passive joints and six lower arms. The actuators of the mechanism are located inside a cylindrical-shaped base, which allows the mechanism to rotate infinitely about the axes of the latter column. In the context of kinematics, the inverse-kinematic problem is solved using positions, velocities, and accelerations of the actuated joints with respect to the position, orientation, and motion of the platform. Accordingly, the main objective of this study is to dynamically model the manipulator using the Newton–Euler approach. For validation, the obtained dynamic model of the Hexarot manipulator is simulated in MATLAB based on the formulations presented in this paper. The kinematic and dynamic models of the manipulator are simulated for a given motion scenario using MATLAB and ADAMS. The results of the mathematical model obtained using MATLAB are in good agreement with that using the ADAMS model, confirming the effectiveness of the proposed mathematical model.


Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Dario Buono ◽  
Michele Pavanetto ◽  
Micaela Olivetti ◽  
...  

The paper introduces a methodology aimed to optimize the performance of hydraulic components; in particular the design of a new two way flow control valve studying the valve internal fluid-dynamic behavior will be introduced. The methodology is based on the definition of a CFD tridimensional fluid-dynamic model. In fact, the model can help engineers to develop the best geometry, to optimize the valve performance, reducing the prototyping requirement and finally the time-to-market and, consequently, the development costs. At first, the original spool internal geometry has been evaluated and studied to tune the mathematical model and to validate it comparing its results with the data obtained through an experimental campaign. Then, the same approach has been applied to investigate several different internal spool geometries to define the best one in all operating conditions. A limited number of solutions have been prototyped and tested to verify the mathematical model predictions, in order to find the best configuration whose performances are consistent with the assigned objective for the component.


Author(s):  
Luca Andreassi ◽  
Claudia Toro ◽  
Stefano Ubertini

In the present study, the results of the numerical implementation of a mathematical model of a planar anode-supported SOFC are reported. In particular, model results are validated and discussed when the fuel is a mixture of hydrogen and carbon monoxide, focusing on the importance of simulating direct oxidation of carbon monoxide. The mathematical model is solved in a 3D environment and the key issue is the validation comparing with experimental data, which is made in different operating conditions to establish the reliability of the presented model. The results show the importance of simulating direct oxidation of carbon monoxide and its effect on the fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document