scholarly journals Investigation of the wear of rolls in asymmetric rolling

Author(s):  
János György Bátorfi ◽  
Purnima Chakravarty ◽  
Jurij Sidor

In the present work, both symmetric and asymmetric rolling processes were investigated by means of numerical approaches. From the algorithm presented, the values of rolling pressure and sliding velocity in the roll gap were determined. These variables allow the estimation of tribological parameters of a given material. To determine the wear of the rolls and rolled materials the Archard's law has been employed. Results of numerical simulations show that the quantitative characteristics of the wear reveal a slight change for slower roll. Whereas the wear value for the faster roll increases with an increase of roll velocity ratio. It was found that for a given roll velocity ratio, rise of friction coefficient causes insignificant change in the wear value for the slower roll, while this value tends to decrease rapidly for the faster roll.

SIMULATION ◽  
2021 ◽  
pp. 003754972199645
Author(s):  
Philippe Babilotte

Complete numerical simulations are given under SciLab® and MATLAB® coding environments, concerning propagative acoustic wavefronts, for laser picosecond ultrasonics under multiwavelength conditions. Simulations of the deformation field and its propagation into bulk material are given under different wavelength configurations for optical pump and probe beams, which are used to generate and to detect the acoustic signal. Complete insights concerning the dynamics of the acoustic waves are given, considering the absence of carrier diffusions into the material. Several numerical approaches are proposed concerning both the functions introduced to simulate the wavefront ( Heaviside or error) and the coding approach (linear/vectorized/ Oriented Object Programming), under the pure thermo-elastic approach.


2009 ◽  
Vol 25 (2) ◽  
pp. 167-175
Author(s):  
K. N. Lie ◽  
Y. M. Chiu ◽  
J. Y. Jang

AbstractThe ribbing instability of forward roll coating is analyzed numerically by linear stability theory. The velocity ratio of two rolls is fixed to be 1/4 for practical surface coating processes. The base flows through the gap between two rolls are solved by use of powerful CFD-RC software package. A numerical program is developed to solve the ribbing instability for the package is not capable of solving the eigenvalue problem of ribbing instability. The effects of the gap between two rolls, flow viscosity, surface tension and average roll velocity on ribbing are investigated. The criterion of ribbing instability is measured in terms of critical capillary number and critical wave number. The results show that the surface coating becomes stable as the gap increases or as the flow viscosity decreases and that the surface coating is more stable to the ribbing of a higher wave number than to the ribbing of a lower wave number. The effect of average roll velocity is not determinant to the ribbing instability. There are optimum and dangerous velocities for each setup of rolling process.


2021 ◽  
Author(s):  
Qingyuan Lin ◽  
Yong Zhao ◽  
Qingchao Sun ◽  
Kunyong Chen

Abstract Bolted connection is one of the most widely used mechanical connections because of its easiness of installation and disassembly. Research of bolted joints mainly focuses on two aspects: high precision tightening and improvement of anti-loosening performance. The under-head bearing friction coefficient and the thread friction coefficient are the two most important parameters that affect the tightening result of the bolted joint. They are also the most critical parameters that affect the anti-loosening performance of the bolted joint. Coulomb friction model is a commonly used model to describe under-head bearing friction and thread friction, which considers the friction coefficient as a constant independent of normal pressure and relative sliding velocity. In this paper, the viscous effect of the under-head bearing friction and thread friction is observed by measuring the friction coefficient of bolted joints. The value of the friction coefficient increases with the increase of the relative sliding velocity and the decrease of the normal pressure. It is found that the Coulomb viscous friction model can better describe the friction coefficient of bolted joints. Taking into account the dense friction effect, the loosening prediction model of bolted joints is modified. The experimental results show that the Coulomb viscous friction model can better describe the under-head bearing friction coefficient and thread friction coefficient. The model considering the dense effect can more accurately predict the loosening characteristics of bolted joints.


2014 ◽  
Vol 59 (4) ◽  
pp. 1533-1538
Author(s):  
A. Kawałek ◽  
H. Dyja ◽  
M. Knapinski ◽  
G. Banaszek ◽  
M. Kwapisz

Abstract In order to enhance the quality of plates, various solutions are being implemented, including normalizing rolling, the process of rolling followed by accelerated cooling, as well as new roll gap control systems. The hydraulic positioning of rolls and the working roll bending system can be mentioned here. The implementation of those systems results in increased loads of the rolling stands and working tools, that is the rolls. Another solution aimed at enhancing the cross-sectional and longitudinal shape of rolled plate is the introduction of asymmetric rolling, which consists in the intentional change of the stress and strain state in the roll gap. Asymmetric rolling systems have been successfully implemented in strip cold rolling mills, as well as in sheet hot rolling mills. The paper present results of studies on the effect of roll rotational speed asymmetry and other rolling process parameters on the change in the shape of rolled strip and the change of rolls separating force for the conditions of normalizing rolling of plates in the finishing stand. The variable process parameters were: the roll rotational speed asymmetry factor, av; the strip shape factor, h0/D; and the relative rolling reduction, ε. Working rolls of the diameter equal to 1000 mm and a constant lower working roll rotational speed of n = 50 rpm were assumed for the tests. The asymmetric rolling process was run by varying the rotational speed of the upper roll, which was lower than that of the lower roll. The range of variation of the roll rotational speed factor, av =vd/vg, was 1.01÷1.15. A strip shape factor of h0/D = 0.05÷0.014 was assumed. The range of rolling reductions applied was ε = 0.08÷0.50. The material used for tests was steel of the S355J2G3 grade. For the simulation of the three-dimensional plastic flow of metal in the roll gap during the asymmetric hot rolling of plates, the mathematical model of the FORGE 2008 ® program was used. For the mathematical description of the effect of rolling parameters on the strip curvature and rolls separating force the special multivariable polynomial interpolation was used. This method of tensor interpolation in Borland Builder programming environment was implemented. On the basis of the carried out analysis can be state, that by using the appropriate relative rolling reduction and working roll peripheral speed asymmetry factor for a given feedstock thickness (strip shape ratio) it is possible to completely eliminate the unfavorable phenomenon of strip bending on exit from the roll gap, or to obtain the permissible strip curvature which does not obstructs the free feed of the strip to the next pass or transferring the plate to the accelerated plate cooling stations. Additionally by introducing the asymmetric plate rolling process through differentiating working roll peripheral speeds, depending on the asymmetry factor used, the magnitude of the total roll separating force can be reduced and, at the same time, a smaller elastic deflection of rolling stand elements can be achieved. As a result smaller elastic deflection of the working rolls, smaller dimensional deviations across its width and length finished plate can be obtained.


Author(s):  
Aravind Dhandapani ◽  
Senthilkumar Krishnasamy ◽  
Thitinun Ungtrakul ◽  
Senthil Muthu Kumar Thiagamani ◽  
Rajini Nagarajan ◽  
...  

Tribology, which may be defined as an interdisciplinary subject, deals with relative motion between two or more bodies, i.e., surfaces that are interacting relatively. Thus, tribology is a science covering three vital classes, namely, 1) wear, 2) friction, and 3) lubrication. The focus of this article is to bring out the elements that are influencing the wear-resisting behavior of thermosetting and thermoplastic composites with natural-based constituents. It was also identified from the literature sources that 1) the treatments on the natural fibers acting as reinforcement and 2) the addition of fillers in resin acting as matrix could improve the wear-resisting behavior of the composites. Additionally, other conditions such as 1) sliding speed, 2) sliding velocity, 3) sliding distance, and 4) operating temperature could also influence the friction coefficient and specific wear rate of the natural-based composites.


Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Asaduzzaman Chowdhury

This paper examines the relation between friction/wear and different types of steel materials under different normal loads and sliding velocities and to explore the possibility of adding controlled normal load and sliding velocity to a mechanical process. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 304 (SS 304), stainless steel 316 (SS 316) and mild steel slide against stainless steel 304 (SS 304) pin. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity. At identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.


2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


Author(s):  
E. Y. A. Wornyoh ◽  
C. F. Higgs

Topography data was obtained from an aluminum thin film deposited unto a substrate. Using this 20 μm × 20 μm specimen, an asperity-based fractional coverage model was used to predict (1) the friction coefficient at a pad/disk interface (2) the thickness of deposited lubricant film and (3) the wear factor for a compacted lubricant pellet in sliding contact. The fractional coverage varies with time and is a useful modeling parameter for quantifying the amount of third body film covering the disk asperities. The model was based on a previous 1-D control volume fractional coverage model which was used to glean tribological parameters including friction coefficient and wear factor. In this model, the wear rate of the pellet, pad friction coefficient, and lubricant thickness can be determined as a function of the pellet load, slider pad load, disk speed, and material properties. Steady-state results from the model adequately predict the self-repairing and self-replenishing nature of powder lubrication as a function of topography.


Author(s):  
Vincent Levasseur ◽  
Charles Leca ◽  
Benjamin Rousse ◽  
Francois Pétrié

This paper adresses Wake Induced Oscillations in the transition between subcritical and critical regime. Both experimental and numerical approaches are proposed and compared here to model tandem risers motion. The main purpose is to enlarge our insights of the behavior of different arrangements of risers in this very tricky range of incoming flow (Re ∈ [134,000; 300,000]) and to assess the CFD ability as an industrial design tool.


2003 ◽  
Vol 125 (4) ◽  
pp. 739-746 ◽  
Author(s):  
B. Jacod ◽  
C. H. Venner ◽  
P. M. Lugt

A previous study of the behavior of friction in EHL contacts for the case of Eyring lubricant behavior resulted in a friction mastercurve. In this paper the same approach is applied to the case of limiting shear stress behavior. By means of numerical simulations the friction coefficient has been computed for a wide range of operating conditions and contact geometries. It is shown that the same two parameters that were found in the Eyring study, a characteristic shear stress, and a reduced coefficient of friction, also govern the behavior of the friction for the case of limiting shear stress models. When the calculated traction data is plotted as a function of these two parameters all results for different cases lie close to a single curve. Experimentally measured traction data is used to validate the observed behavior. Finally, the equations of the mastercurves for both types of rheological model are compared resulting in a relation between the Eyring stress τ0 and the limiting shear stress τL.


Sign in / Sign up

Export Citation Format

Share Document