scholarly journals Simultaneous Two-photon In Vivo Imaging of Synaptic Inputs and Postsynaptic Targets in the Mouse Retrosplenial Cortex

Author(s):  
Kacper Łukasiewicz ◽  
Magdalena Robacha ◽  
Łukasz Bożycki ◽  
Kasia Radwanska ◽  
Rafał Czajkowski
2020 ◽  
Author(s):  
P. Meenakshi ◽  
S. Kumar ◽  
J. Balaji

AbstractImmediate early genes (IEGs) are widely used as a marker for neuronal plasticity. Here, we model the dynamics of IEG expression as a consecutive, irreversible first order reaction with a limiting substrate. We show that such a model, together with two-photon in vivo imaging of IEG expression, can be used to identify distinct neuronal subsets representing multiple memories. We image retrosplenial cortex (RSc) of cFOS-GFP transgenic mice to follow the dynamics of cellular changes resulting from both seizure and contextual fear conditioning behaviour. The analytical expression allowed us to segregate the neurons based on their temporal response to one specific behavioural event, thereby improving the sensitivity of detecting plasticity related neurons. This enables us to establish representation of context in RSc at the cellular scale following memory acquisition. Thus, we obtain a general method which distinguishes neurons that took part in multiple temporally separated events, by measuring fluorescence from individual neurons in live mice.SummaryIdentifying neuronal ensemble associated with different memories is vital in modern neuroscience. Meenakshi et al model and use the temporal expression dynamics of IEGs rather than thresholded intensities of the probes to identify the neurons encoding different memory in vivo.Graphical abstract


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Balázs B Ujfalussy ◽  
Judit K Makara ◽  
Tiago Branco ◽  
Máté Lengyel

Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Author(s):  
Li Li ◽  
Zheng Lv ◽  
Zhongwei Man ◽  
Zhenzhen Xu ◽  
YuLing Wei ◽  
...  

Amyloid fibrils are associated with many neurodegenerative diseases. In-situ and in-vivo visualization of amyloid fibrils is important for medical diagnostic and requires fluorescent probes with both excitation and emission wavelengths in...


2012 ◽  
Vol 278 (1-2) ◽  
pp. 158-165 ◽  
Author(s):  
Tamás Kobezda ◽  
Sheida Ghassemi-Nejad ◽  
Tibor T. Glant ◽  
Katalin Mikecz

2012 ◽  
Vol 2012 (12) ◽  
pp. pdb.prot072264-pdb.prot072264 ◽  
Author(s):  
H. Steffens ◽  
F. Nadrigny ◽  
F. Kirchhoff

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Livia Asan ◽  
Claudia Falfán-Melgoza ◽  
Carlo A. Beretta ◽  
Markus Sack ◽  
Lei Zheng ◽  
...  

AbstractMagnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.


2016 ◽  
Vol 5 (1) ◽  
pp. e16007-e16007 ◽  
Author(s):  
Adi Schejter Bar-Noam ◽  
Nairouz Farah ◽  
Shy Shoham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document