scholarly journals Metals and Alloys Additives as Enhancer for Rocket Propulsion: A Review

Author(s):  
Izham Izzat Ismail ◽  
Norhuda Hidayah Nordin ◽  
Muhammad Hanafi Azami ◽  
Nur Azam Abdullah

A rocket's engine usually uses fuel and oxygen as propellants to increase the rocket's projection during launch. Nowadays, metallic ingredients are commonly used in the rocket’s operation to increase its performance. Metallic ingredients have a high energy density, flame temperature, and regression rate that are important factors in the propulsion process. There is a wide range of additives have been reported so far as catalysts for rocket propulsion. The studies show that the presence of metal additives improves the regression rate, specific impulse and combustion efficiency. Herein, the common energetic additives for rocket propulsion such as metal and light metals are reviewed. Besides the effect of these energetic particles on the regression behaviors of base (hybrid) fuel has been exclusively discussed. This paper also proposed a new alloy namely high entropy alloys (HEAs) as a new energetic additive that can potentially increase the performance of the rocket propellant system.

2021 ◽  
Author(s):  
Robert Sprenkle ◽  
Luciano Silvestri ◽  
M. S. Murillo ◽  
Scott Bergeson

Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 409
Author(s):  
Xiaofei Tang ◽  
Rui Zhu ◽  
Tianjing Shi ◽  
Yu Wang ◽  
Xiaochen Niu ◽  
...  

High energy density materials (HEDM) are the subject of an extensive research effort in relation to the use of these compounds as components of rocket propellants, powders, and formulations of high-performance explosives. Hexanitrohexaazaisowurtzitane (HNIW, i.e., CL-20) has received much attention in these research fields for its specific impulse, burning rate, ballistics, and detonation velocity. In this paper, the development and performances of the explosives from the first to the fourth generation are briefly summarized, and the synthesis status of the fourth-generation explosive, HNIW, is reviewed. The key issues that restrict the development of industrial amplification synthesis of HNIW are analyzed, and the potential directions of development are proposed. It is pointed out that to synthesize new and efficient catalysts is the key to making the cost-effective manufacturing of CL-20 a reality.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


2000 ◽  
Vol 18 (2) ◽  
pp. 213-218 ◽  
Author(s):  
M. DUNNE ◽  
J. EDWARDS ◽  
P. GRAHAM ◽  
A. EVANS ◽  
S. ROTHMAN ◽  
...  

The achievement of ignition from an Inertial Confinement Fusion capsule will require a detailed understanding of a wide range of high energy density phenomena. This paper presents some recent work aimed at improving our knowledge of the strength and equation of state characteristics of low-Z materials, and outlines data which will provide quantitative benchmarks against which our predictive radiation hydrodynamics capabilities can be tested. Improvements to our understanding in these areas are required if reproducible and predictable fusion energy production is to be achieved on the next generation of laser facilities.In particular, the HELEN laser at AWE has been used to create a thermal X-ray source with 140 eV peak radiation temperature and 3% instantaneous flux uniformity to allow measurements of the Equation of State of materials at pressures up to 20 Mbar to an accuracy of <±2% in shock velocity. The same laser has been used to investigate the onset of spallation upon the release of a strong shock at a metal-vacuum boundary, with dynamic radiography used to image the spalled material in flight for the first time. Finally, a range of experiments have been performed to generate quantitative radiation hydrodynamics data on the evolution of gross target defects, driven in both planar and imploding geometry. X-ray radiography was used to record the evolving target deformation in a system where the X-ray drive and unperturbed target response were sufficiently characterized to permit meaningful analysis. The results have been compared to preshot predictions made using a wide variety of fluid codes, highlighting substantial differences between the various approaches, and indicating significant discrepancies with the experimental reality. The techniques developed to allow quantitative comparisons are allowing the causes of the discrepancies to be identified, and are guiding the development of new simulation techniques.


2015 ◽  
Vol 8 (12) ◽  
pp. 3515-3530 ◽  
Author(s):  
Ke Gong ◽  
Qianrong Fang ◽  
Shuang Gu ◽  
Sam Fong Yau Li ◽  
Yushan Yan

As members of the redox-flow battery (RFB) family, nonaqueous RFBs can offer a wide range of working temperature, high cell voltage, and potentially high energy density.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ziyu Wang ◽  
Ziwei Bai ◽  
Guangying Yu ◽  
Sai Yelishala ◽  
Hameed Metghalchi

Syngas has gained attention recently due to its high energy density and environmentally friendly characteristics. Flame stability plays an important role in flame propagation in energy conversion devices. Experimental studies were performed in a cylindrical chamber to investigate flame instability of syngas/air/diluent mixture. A Z-shape Schlieren system coupled with a high-speed complementary metal–oxide–semiconductor camera was used to record flame pictures up to 40,000 frames per second. In this research, syngas is a mixture of hydrogen and carbon monoxide and diluent is a blend of 14% CO2 and 86% N2 with the same specific heat as the burned gases. Three main flame instabilities namely Rayleigh–Taylor (body force) instability, hydrodynamic instability, and thermal-diffusive instability have been studied. For the onset of flame instability, a power law correlation for the ratio of critical pressure to initial pressure of syngas/air/diluent flames over a wide range of initial temperatures (298–450 K), initial pressures (1.0–2.0 atm), equivalence ratios (0.6–3.0), diluent concentrations (0–10%), and hydrogen percentages (5–25%) in the fuel has been developed.


2016 ◽  
Vol 840 ◽  
pp. 87-90 ◽  
Author(s):  
Rosyaini Afindi Zaman ◽  
Mohamad Johari Abu ◽  
Saniah Abdul Karim ◽  
Julie Juliewatty Mohamed ◽  
Mohd Fadzil Ain ◽  
...  

In recent years, there has been an increasing interest on high dielectric constant that have significant applications in electronic devices. Dielectric materials have many technological applications such as capacitors, resonators and filters. High dielectric ceramic capacitors based perovskite oxides are necessary for modern electronic devices and are found to be suitable for a wide range of applications. Subramanian et al. discovered the high dielectric constant of CaCu3Ti4O12 (CCTO) ~ 10,000 at room temperature. CCTO has the cubic perovskite crystal structure and high dielectric constant of ~ 104 up to 105 at radio frequency and good temperature stability over a wide temperature range [1,2]. These properties were desired for various microelectronic applications. With the high dielectric constant, the material can store more charge and the values make CCTO an attractive material for ultra-high energy density capacitors. However, this properties can be accomplished if single phase of CCTO is formed. Many research have been done recently on the synthesis of the cubic perovskite CCTO and many techniques are working such as sol-gel route [3], combustion techniques [4], molten salt process [5] and etc., but this technique is difficult and complex process during sample preparation.


Author(s):  
Sohan Lal ◽  
Arindrajit Chowdhury ◽  
Neeraj Kumbhakarna ◽  
Sundaramoorthy Nandagopal ◽  
Arvind Kumar ◽  
...  

Novel Homocubane based HED materials with high densities, HOF and density specific impulse are superior to conventional fuels RP1 and HTPB.


Author(s):  
Michael M. Bernitsas ◽  
Kamaldev Raghavan ◽  
Y. Ben-Simon ◽  
E. M. H. Garcia

Any device aiming to harness the abundant clean and renewable energy from ocean and other water resources in the USA must have high energy density, be unobtrusive, have low maintenance, be robust, meet life cycle cost targets, and have a 10–20 year life. The VIVACE (Vortex Induced Vibration Aquatic Clean Energy) Converter — invented by Bernitsas & Raghavan and patented through the University of Michigan — satisfies those criteria. It converts ocean/river current kinetic energy to electricity using VIV successfully and efficiently for the first time. VIVACE is based on the simple idea of maximizing rather than spoiling vortex shedding and exploiting rather than suppressing VIV. It introduces optimal damping for energy conversion while maintaining VIV over a broad range of vortex shedding synchronization. VIV occurs over very broad ranges of Reynolds (Re) number. Only two transition regions suppress VIV. Thus, even from currents as slow as 0.25m/sec, VIVACE can extract energy with high efficiency making ocean/river current energy a more accessible and economically viable resource. In this paper, the underlying concepts of the VIVACE Converter are discussed. The designs of the physical model and lab prototype are presented. A mathematical model is developed and design particulars for a wide range of application scales are calculated. Experimental measurements on the lab prototype are reported in the sequel paper and used here for preliminary benchmarking.


Sign in / Sign up

Export Citation Format

Share Document