scholarly journals Chemical composition and antibacterial activities of the essential oils of Plectranthus glandulosus and Cinnumomum zeylrrnicum from Cameroon

2002 ◽  
Vol 70 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Jirovetz Leopold ◽  
Buchbauer Gerhard ◽  
Ngassoum Martin B. ◽  
Essia-Ngang Jean J. ◽  
Tatsadjieu Leopold N. ◽  
...  

Two aromatic plants have been selected for chemical investigation on account of their antibacterial activities, Plectranthus glandulosus (fresh leaves) and Cinnamomum zeylunicum (dried leaves). P. glandulosus is used as a medicinal plant, while Cinnamomum zeylunicum is used as a common spice in many recipes in Cameroon. The essential oils of the plants have been obtained by hydrodistillation using a Clevenger type apparatus, the yields of oils are about 0.3% and 2.0% respectively.The essential oil of P. glandulosus contains mainly β-thujone (about 31%), p-cymen-8-01 (about 25%) and neral (about 10%) and the essential oil of C. zcylcinicum is characterised by a high percentage of eugenol (85%).These essential oils have been tested against three strains of bacteria, namely Pseudornonas fluorescens. Escherichiu coli and Staphylococcus aureus; qualitative tests (diffusion through solid medium) and quantitative tests (dilution method) have been carried out. P. fluorescens shows a higher resistance to the two oils (MIC values not less than 5000 ppm). E. coli is more sensitive to these oils, while against S uureus the essential oil of C. zcylcinicum still shows a high activity (3500 ppm).The antibacterial activities of the essential oils could be attributed to the components eugenol as the active component of C. zcylcinicum and β-thujone and p-cymen-4-01 of the essential oil of P. glandulosus.

2009 ◽  
Vol 3 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Hend A. Hamedo

Technological application of essential oils, as natural antimicrobial agents, to reduce the effect of pathogenic microorganisms, requires new methods of detection. The present work evaluated the parameters of antimicrobial activity of the essential oils of rosemary (Rosmarinus officinalis) on two pathogenic strains Escherichia coli and Staphylococcus aureus. The MBC and MIC values were of 2.5, 25 μl ml-1, and values of 1.25 and 5 μl ml-1 for the two strains respectively. In this study, an attempt has been made to evaluate randomly amplified polymorphic DNA (RAPD) analysis for its potential to establish antimicrobial effect of rosemary essential oil. For the preliminary assessment, this study compared the effects occurring at molecular levels in E. coli and Staph. aureus exposed to rosemary essential oil at the MIC concentrations for the two organisms. The qualitative modifications arising in random amplified polymorphic DNA (RAPD) profiles as a measure of DNA effects were compared with control which showed many differences. In conclusion, the measurement of parameters at molecular levels is valuable for investigating the specific effects of agents interacting with DNA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Serawit Deyno ◽  
Andrew G. Mtewa ◽  
Derick Hope ◽  
Joel Bazira ◽  
Eyasu Makonnen ◽  
...  

Echinops kebericho Mesfin is traditionally used for the treatment of various infectious diseases. This study investigated antibacterial activity of the essential oil (EO) and the different fractions of ethanol extract. The most active component was isolated and identified. Isolation and purification was accomplished using chromatographic techniques while identification was done by spectroscopic method. Minimum inhibitory concentration (MIC) was determined using the broth micro-dilution method. In bioactive-guided isolation, percent inhibition was determined using optical density (OD) measurement. The MICs of the essential oil ranged from 78.125 μg/ml to 625 μg/ml, and its activity was observed against methicillin-resistant Staphylococcus aureus (MRSA, NCTC 12493). Ethyl acetate fraction showed high activity against MRSA (NCTC 12493), MIC = 39.075 μg/ml followed by Enterococcus faecalis (ATCC 49532), MIC = 78.125 μg/ml and was least active against Klebsiella pneumoniae (ATCC 700603), MIC = 1,250 μg/ml. MIC of hexane fraction ranged from 156.2 µg/ml to Escherichia coli (ATCC 49532) to 1,250 μg/ml to E. coli (NCTC 11954). The MICs of chloroform fraction ranged from 312.5 to 2500 μg/ml; while butanol fraction could be considered pharmacologically inactive as its MIC value was 2,500 μg/ml for all and no activity against E. coli (NCTC 11954). Dehydrocostus lactone was successfully isolated and identified whose MIC was 19.53 μg/ml against MRSA. Dehydrocostus lactone isolated from E. kebericho M. showed noteworthy antibacterial activity which lends support to ethnopharmacological use of the plant. Further optimization should be done to improve its antibacterial activities and pharmacokinetic profile.


Author(s):  
Messaoud Ramdani ◽  
RIMA HAICHOUR1 ◽  
TAKIA LOGRADA ◽  
PIERRE CHALARD ◽  
GILLES FIGUEREDO4

Abstract. Haichour R, Lograda T, Ramdani M, Chalard P, Figueredo G. 2020. Chemical composition and antimicrobial activity of Pinus halepensis from Algeria. Biodiversitas 21: 4345-4360. The chemical composition of Pinus halepensis essential oils and their antibacterial activities were investigated. Plant samples were collected in the flowering stage from the East locality of Algeria. The aerial parts of P. halepensis obtained from fifteen localities were subjected to a hydro-distillation, providing pale yellow viscous oils. The obtained yield average was 0.64 ± 0.37%. The analysis of the chemical composition of essential oils was performed by using GC and GC / MS. A total of thirty-seven compounds representing 99.4 ± 0.5% of the total oils were identified in P. halepensis. The hydrocarbon compounds were found to dominate essential oils in P. halepensis. In addition, the major compounds were caryophyllene-E (29.06 ± 8.5%), myrcene (19.14 ± 6.67%), a-pinene (16.86 ± 3.35%), phenyl ethyl 3-methyl butanoate (5.67 ± 2.47%), a-humulene (4.81 ± 1.43%), terpinolene (3.94 ± 1.6%) and sabinene (3.11 ± 1.84%). Based on their chemical composition, essential oil samples were clustered in five groups by UPGMA analysis. The first group includes the Tafrent essential oil population. It is characterized by the phenyl ethyl-3-methyl butanoate – Sabinene ‒ Δ3-carene chemotype. The second group was subdivided into two clusters. The first cluster or chemotype was characterized by the myrcene ‒ α-pinene ‒ caryophyllene-E. The second chemotype was characterized by caryophyllene-E ‒ α-humulene ‒ myrcene. The essential oil of P. halepensis is an effective antimicrobial against Staphylococcus aureus; Klebsiella pneumonia; Salmonella enteric spp arizonae; Listeria innocua; Proteus mirabilis and Bacillus cereus, and no effect on the E. coli and Pseudomonas aeruginosa.


2020 ◽  
Vol 24 (9) ◽  
pp. 909-1009
Author(s):  
Maryam Akaberi ◽  
Zahra Tayarani-Najaran ◽  
Iraj Mehregan ◽  
Javad Asili ◽  
Amirhossein Sahebkar ◽  
...  

One of the most important families of Iranian flora is Apiaceae (Umbelliferae). Most of the species of this family are aromatic plants and rich in essential oils with diverse structures. In the present review, the essential oil composition of 63 genera comprising 141 Apiaceae (66.4% native 33.6% endemic) is summarized.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Sebastián Candelaria-Dueñas ◽  
Rocío Serrano-Parrales ◽  
Marisol Ávila-Romero ◽  
Samuel Meraz-Martínez ◽  
Julieta Orozco-Martínez ◽  
...  

In Tehuacán-Cuicatlán valley (Mexico), studies have been carried out on the essential oils of medicinal plants with antimicrobial activity and it was found that they present compounds in common such as: α-pinene, β-pinene, carvacrol, eugenol, limonene, myrcene, ocimene, cineole, methyl salicylate, farnesene, and thymol. The goal of this study was to assess the antimicrobial activity of essential oils’ compounds. The qualitative evaluation was carried out by the Kirby Baüer agar diffusion technique in Gram-positive bacteria (11 strains), Gram-negative bacteria (18 strains), and yeasts (8 strains). For the determination of the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), the agar dilution method was used. All the evaluated compounds presented antimicrobial activity. The compounds eugenol and carvacrol showed the largest inhibition zones. Regarding yeasts, the compounds ocimene, cineole, and farnesene did not show any activity. The compounds eugenol, carvacrol, and thymol presented the lowest MIC; bactericidal effect was observed at MIC level for S. aureus 75MR, E. coli 128 MR, and C albicans CUSI, for different compounds, eugenol, carvacrol, and thymol. Finally, this study shows that the essential oils of plants used by the population of Tehuacán-Cuicatlán valley share compounds and some of them have antibacterial and fungicidal activity.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Silvia Madeddu ◽  
Alessandra Marongiu ◽  
Giuseppina Sanna ◽  
Carla Zannella ◽  
Danilo Falconieri ◽  
...  

Plant products provide an alternative and successful source of lead compounds for the pharmaceutical industry. The present study was aimed to evaluate, in cell-based assays, the antiviral properties of essential oils obtained from plants that commonly grow in Sardinia, Italy, against a broad spectrum of RNA/DNA viruses. The essential oils of Helichrisumitalicum (Roth) G. Don ssp. microphyllum (Willd.) Nyman, Laurus nobilis L., Mirtuscommunis L., Pistacia lentiscus L., Salvia officinalis L., Saturejathymbra L., Lavandula angustifolia Mill., Foeniculum vulgare Mill., and Eucalyptus globulus Labill. were extracted by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC–MS). Interestingly, the essential oil of Salvia officinalis showed moderate activity against bovine viral diarrhea virus (BVDV), an enveloped RNA virus belonging to the Flaviviridae family. BVDV is responsible for several clinical manifestations in bovines, including respiratory, gastroenteric, and reproductive diseases, with a significant economic impact. With the aim to individuate the constituent of the Salvia officinalis responsible for the biological activity, we tested the major components of the oil: camphene, β-pinene, limonene, 1,8-cineole, cis-thujone, camphor, (E)-caryophyllene, and α-humulene. Here, we describe α-humulene as an active component that is non-cytotoxic and active against BVDV (EC50 = 36 µM). Its antiviral effects were evaluated using virucidal cytopathic effect inhibition and viral yield reduction assays. This is the first scientific report showing the anti BVDV effects of Salvia officinalis essential oil and α-humulene as the main active component.


Anaerobe ◽  
2011 ◽  
Vol 17 (6) ◽  
pp. 399-402 ◽  
Author(s):  
A. Alexopoulos ◽  
A.C. Kimbaris ◽  
S. Plessas ◽  
I. Mantzourani ◽  
I. Theodoridou ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


Sign in / Sign up

Export Citation Format

Share Document