scholarly journals Monitoring of Antimicrobial Activity of Essential Oils Using Molecular Markers

2009 ◽  
Vol 3 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Hend A. Hamedo

Technological application of essential oils, as natural antimicrobial agents, to reduce the effect of pathogenic microorganisms, requires new methods of detection. The present work evaluated the parameters of antimicrobial activity of the essential oils of rosemary (Rosmarinus officinalis) on two pathogenic strains Escherichia coli and Staphylococcus aureus. The MBC and MIC values were of 2.5, 25 μl ml-1, and values of 1.25 and 5 μl ml-1 for the two strains respectively. In this study, an attempt has been made to evaluate randomly amplified polymorphic DNA (RAPD) analysis for its potential to establish antimicrobial effect of rosemary essential oil. For the preliminary assessment, this study compared the effects occurring at molecular levels in E. coli and Staph. aureus exposed to rosemary essential oil at the MIC concentrations for the two organisms. The qualitative modifications arising in random amplified polymorphic DNA (RAPD) profiles as a measure of DNA effects were compared with control which showed many differences. In conclusion, the measurement of parameters at molecular levels is valuable for investigating the specific effects of agents interacting with DNA.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1574
Author(s):  
Zoran S. Ilić ◽  
Lidija Milenković ◽  
Ljubomir Šunić ◽  
Nadica Tmušić ◽  
Jasna Mastilović ◽  
...  

The aim of this study was to determine the antimicrobial activity of essential oils obtained from sweet basil (Ocimum basilicum L. cv. ‘Genovese’) cultivated in the open field under different shading conditions (red, blue, and pearl nets with a shade index of 50% and full sunlight exposure (control plants)), harvested at different times. The antimicrobial activity of basil essential oils (BEOs) obtained from all samples was determined for four microorganisms, while determinations for an additional five microorganisms included samples from non-shaded plants, plants grown under red and pearl nets, and second harvest of plants grown under blue net. Basil essential oil exhibited antimicrobial activity surpassing the activity of relevant commercial antibiotics regardless of growing conditions in the case of B. cereus, K. pneumoniae and C. albicans, while superior antimicrobial activity was exhibited in the case of essential oils from plants grown under blue nets in the case of S. aureus, E. coli and P. vulgaris. The influence of the application of colored shading nets was highly significant (p < 0.01) in the cases of all analyzed microorganisms except C. albicans and P. aeruginosa, while the influence of harvest time was proven in the cases of all microorganisms except K. pneumoniae. ANOVA proved that antimicrobial activities are highly dependent on the methods of plant production, shading treatment, and harvest time. Obtained results are discussed in relation to previously determined composition and yield of essential oils from basil grown under shade nets and harvested in different periods.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1303 ◽  
Author(s):  
Do N. Dai ◽  
Nguyen T. Chung ◽  
Le T. Huong ◽  
Nguyen H. Hung ◽  
Dao T.M. Chau ◽  
...  

Members of the genus Cinnamomum (Lauraceae) have aromatic volatiles in their leaves and bark and some species are commercially important herbs and spices. In this work, the essential oils from five species of Cinnamomum (C. damhaensis, C. longipetiolatum, C. ovatum, C. polyadelphum and C. tonkinense) growing wild in north central Vietnam were obtained by hydrodistillation, analyzed by gas chromatography and screened for antimicrobial and mosquito larvicidal activity. The leaf essential oil of C. tonkinense, rich in β-phellandrene (23.1%) and linalool (32.2%), showed excellent antimicrobial activity (MIC of 32 μg/mL against Enterococcus faecalis and Candida albicans) and larvicidal activity (24 h LC50 of 17.4 μg/mL on Aedes aegypti and 14.1 μg/mL against Culex quinquefasciatus). Cinnamomum polyadelphum leaf essential oil also showed notable antimicrobial activity against Gram-positive bacteria and mosquito larvicidal activity, attributable to relatively high concentrations of neral (11.7%) and geranial (16.6%). Thus, members of the genus Cinnamomum from Vietnam have shown promise as antimicrobial agents and as potential vector control agents for mosquitoes.


2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


2021 ◽  
Vol 18 ◽  
Author(s):  
Miguel Ángel Castillo ◽  
María Guadalupe Reyes ◽  
Elsa Mónica Farfán Torres ◽  
María Laura Uriburu

Background: Xanthomonas axonopodis pv. citri is a gram-negative bacterium that affects citrus crops, causing a disease known as citrus canker. Although essential oils and other compounds isolated from plants represent a natural alternative to treat this disease, they have the disadvantage of having low solubility in the media in which the bioassays to determine antimicrobial activity are performed. This has led several researchers to evaluate the solubility of plant essential oils in alternative solvents. Objectives: The aim of this study was to evaluate the solubility of the essential oil from Aloysia gratissima as well as that of low-polarity extracts and pure compounds of the genus Flourensia in diluted agar/Tween 80 solutions to test and improve their antimicrobial activity against Xanthomonas axonopodis pv. citri. Methods: Antimicrobial activity against Xanthomonas axonopodis pv. citri was determined by bioautography, agar diffusion, and microdilution methods. Results: The A. gratissima oil showed increased activity in the agar (0.15 % m/v)/Tween80 (0.5 % v/v) 1:1 mixture, with MIC values ranging from 75 to 100 µL/mL, while Flourensia spp. extracts were more soluble in agar solution (0.15 % m/v). The pure compounds tested presented MIC values ranging from 50 to 150 µg/mL. Conclusion: The proven antimicrobial activity of both Aloysia gratissima essential oil and Flourensia spp. extracts and pure compounds allows proposing these natural products as potential antimicrobial agents in the control of citrus canker.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Stephanie de Rapper ◽  
Alvaro Viljoen ◽  
Sandy van Vuuren

The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination.


Author(s):  
Matěj Božik ◽  
Pavel Nový ◽  
Pavel Klouček

Essential oils are volatile substances from plants and many of them have antimicrobial activity. For that reason, they have become known as a useful alternative to chemical preservatives and pesticides. In this study, we tested essential oils of four aromatic plants. Cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris), oregano (Origanum vulgare) and clove (Syzygium aromaticum) essential oils were investigated for their composition and antimicrobial effect against plant pathogenic bacteria (Pectobacterium spp. and Pseudomonas spp.). Both are commonly associated with diseased fruit trees in orchards and gardens. The chemical composition of the tested essential oils was identified by gas chromatography coupled with mass spectrometry. The cinnamon essential oil was most effective form tested oil. The experimental results indicated that the wild strains of tested bacteria are more resistant to essential oils than commonly used laboratory strains. In conclusion, certain essential oils could be used for the control of postharvest bacterial pathogens. The findings of the present study suggest that the essential oils have a potential to be used as antimicrobial agents.


Author(s):  
D. B. Thin ◽  
V. Q. Thanh ◽  
B. B. Thinh

Abstract. Recent years have seen the development of bacterial resistance to currently available antibiotics, which necessitates a search for new antimicrobial agents. Amomum muricarpum Elmer is a widely used medicinal plant species in the genus Amomum (family Zingiberaceae) that is commonly found in Laos, the Philippines, China, and Vietnam. The present article describes the chemical composition and antimicrobial activity of essential oils extracted from the leaves and rhizomes of A. muricarpum from North Vietnam. The hydrodistilled essential oil was analyzed using gas chromatography and gas chromatography-mass spectrometry, with the broth microdilution method designed to evaluate its antimicrobial efficacy. The absolute yield of essential oils amounted to 0.11% and 0.13% (v/w) for leaves and rhizomes, respectively, on a dry weight basis. It was found that the leaves and rhizomes of A. muricarpum produce oils abounding in monoterpenes. Of the total identified volatile components in the leaf oil (97.18%), three main constituents include α-pinene (40.45%), linalool (12.34%), and β-pinene (10.31%). In the rhizome oil, the main constituents include α-pinene (48.10%), β-pinene (20.32%), and linalool (7.56%) of the total identified volatile components (98.08%). An antimicrobial activity test indicates that essential oils from the leaves and rhizome of A. muricarpum inhibit the growth of Staphylococcus aureus ATCC 25923, with a minimum inhibitory concentration (MIC) of 200 µg/ml. In addition, the rhizome essential oil also exhibits antimicrobial activity against Bacillus cereus ATCC 14579, with a MIC value of 200 µg/ml. The results indicate the potential of essential oils extracted from A. muricarpum as a source of antimicrobial agents.


2015 ◽  
Vol 35 (01) ◽  
pp. 43 ◽  
Author(s):  
Tita Rialita ◽  
Winiati Pudji Rahayu ◽  
Lilis Nuraida ◽  
Budi Nurtama

The aims of this study was to determine the characteristics, composition and antimicrobial activity of essential oils of local Indonesian red ginger and red galangal against four pathogenic and food spoilage bacteria, which were B.cereus ATCC 10876, E. coli ATCC 25922, S. typhimuriumATCC 14028, and P. aeruginosa ATCC 27853. Analysis of physicochemical characteristics was carried outin accordance with ISO7355:1985. The chemical compositionwas analyzed using aGC-MS. The antimicrobial activity was determined by disc diffusion method and broth microdillution method was used for determine MIC and MBC values. Red ginger essential oil characteristic was brownish yellow, specific gravity 0.883, refractive index 1.480, optical rotation -8.45o, clear soluble (1:1) in 90 % alcohol, 2.06 acid number and 42.45 ester number. Redgalangal essential oil had a characteristic bright yellow color, specific gravity 0.895, refractive index 1.496, optical rotation -9.15o, clear soluble (1:1) in 90 % alcohol, 1.95 acid number and 140.15 ester number. The major component of red ginger essential oils were trimethyl-heptadien-ol, ar-curcumene, camphene, carbaldehyde, -sesquiphellandrene, and nerol; while the major component of red galangal essential oil were 1.8-cineole, chavicol, 9-desoxo-9-xi-hydroxy-3-pentaacetate-3,5,7,8,9,12-Ingol,- caryophyllene and -selinene. The essential oil of red ginger and red galangal hadmoderate antibacterial activity against pathogenic and food spoilage bacteria with the average inhibition zone 7.17-10.33 and 7.25-11.17mm.Red ginger essential oils could inhibit the growth of tested bacteria with MIC values of 2.65-3.97 mg/mL and MBC value of 3.10-5.29 mg/mL, while the red galangal essential oil could inhibit the growth of tested bacteria with MIC values of 1.79-4.03 mg mL and MBC values of 1.79-4.92 mg/mL. Based on the MIC and MBC values,all tested bacteriasensitivity to essential oils of red ginger and galangal red decline in a row B.cereus > E. coli > S. typhimurium> P. aeruginosa. Sensitivity of Gram positive and Gram negative bacteria to both essential oils demonstrate the potential of the oils to be used as a natural preservative in the food industry.Keywords: Antimicrobial, essential oil, red ginger, red galangal ABSTRAKPenelitian ini bertujuan untuk mengetahui karakteristik, komposisi dan aktivitas antimikroba minyak esensial jahe merah dan lengkuas merah lokal Indonesia terhadap empat spesies bakteri patogen dan perusak pangan, yaitu B.cereus ATCC 10876, E.coli ATCC 25922, S. typhimurium ATCC 14028, dan P. aeruginosa ATCC 27853. Analisis karakteristikfisika-kimia dilakukan sesuai standar ISO 7355:1985. Komposisi kimia dianalisis menggunakan alat GC-MS. Pengujian aktivitas antimikroba dilakukan dengan metode difusi cakram untuk menentukan zona hambat, sertabroth microdillution untuk menentukan nilai Minimum Inhibitory Concentration (MIC) dan Minimum Bactericidal Concentration (MBC).Karakteristik minyak esensial jahe merah yang dihasilkan yaitu kuning kecoklatan, berat jenis 0,883, indeks bias 1,480, putaran optik -8.45, larut jernih (1:1) dalam alkohol 90%, bilangan asam 2,06, dan bilangan ester 42,45. Minyak esensial lengkuas merah memiliki karakteristik warna kuning terang, berat jenis 0,895, indeks bias 1,496, putaran optik-9.15, larut jernih (1:1) dalam alkohol 90%, bilangan asam 1,95 dan bilangan ester 140,15. Komponen mayor minyak esensial jahe merah terdiri dari trimethyl-heptadien-ol, ar-curcumene, camphene, carbaldehyde, -sesquiphellandrene, dan nerol; sedangkan komponen mayor minyak esensial lengkuas merah terdiri dari 1.8-cineole, chavicol,9-desoxo9-xi-hydroxy-3,5,7,8,9,12-pentaacetat-ingol, -caryophyllenedan -selinene. Minyak esensial jahe merah dan lengkuas merah memiliki aktivitas antibakteri yang bersifat moderat terhadap bakteri patogen dan perusak pangan, dengan kisaran zona hambat rata-rata 7,17-10,33 mm dan 7,25-11,17 mm. Minyak esensial jahe merah dapat menghambatpertumbuhan bakteri uji pada nilai MIC 2,65-3,97 mg/mL dan nilai MBC 3,10-5,29 mg/mL, sedangkan minyak esensial lengkuas merah dapat menghambat bakteri uji dengan nilai MIC 1,79-4,03 mg/mL dan nilai MBC 1,79-4,92 mg/mL. Berdasarkan nilai MIC dan MBC, sensitivitas bakteri uji terhadap minyak esensial jahe merah dan lengkuas merah menurun berturut-turut dari B. cereus > E. coli > S. typhimurium > P. aeruginosa. Sensitivitas bakteri Gram positif dan Gram negatif terhadap kedua minyak esensial ini menunjukkan potensi minyak esensial jahe merah dan lengkuas merah untuk digunakan sebagai pengawet alami di industri pangan.Kata kunci: Antimikroba, jahe merah, lengkuas merah, minyak esensial


2011 ◽  
Vol 34 (1) ◽  
pp. 11 ◽  
Author(s):  
Ma. Magdalena Ortega-Nieblas ◽  
Ma. Refugio Robles-Burgueño ◽  
Evelia Acedo-Félix ◽  
Alberto González-León ◽  
Adriana Morales-Trejo ◽  
...  

The chemical composition and antimicrobial activity of Lippia palmeri S. Wats essential oil extracted from plants collected of two localities (Álamos and Puerto del Orégano) in the State of Sonora, México, was examined. Essential oils (EO) were obtained from oregano leaves by steam distillation, analyzed by gas chromatography coupled with a mass spectrometer, and their antimicrobial activity against human pathogens investigated by disc diffusion. Álamos and Puerto del Orégano essential oils (AEO and POEO) presented 50 and 60 constituents, respectively. The components were classified as monoterpenes, sesquiterpenes and phenolics. AEO most abundant components (> 2%) included p-cymene, thymol, isoaromandrene, carvacrol, γ-terpinene, p-thymol, longipinene-epoxide and eudesmol; while for POEO were carvacrol, thymol, p-cymene, caryophyllene, thymol acetate, α-bisabolene, γ-terpinene, myrcene and α-caryophyllene. These results implicate that chemotypes involved were a p-cymene/thymol in AEO and carvacrol in POEO. In general, EO antimicrobial activity against four Gram-positive and six Gram-negative bacteria varied according to the plant origin. However, both POEO and AEO showed the strongest activity against Escherichia coli O157:H7 and Staphylococcus aureus. This is the first report of L. palmeri essential oil characterization, and our results support the notion that these oils could be useful in food flavoring and preservation.


Sign in / Sign up

Export Citation Format

Share Document