scholarly journals Occurrence of the Paracalanus parvus species complex in offshore waters south of Japan and their genetic and morphological identification to species

2016 ◽  
Vol 11 (4) ◽  
pp. 131-143 ◽  
Author(s):  
Kiyotaka Hidaka ◽  
Hiroshi Itoh ◽  
Junya Hirai ◽  
Atsushi Tsuda
2021 ◽  
Vol 8 ◽  
Author(s):  
Nina Yasuda ◽  
Yuko F. Kitano ◽  
Hiroki Taninaka ◽  
Satoshi Nagai ◽  
Takuma Mezaki ◽  
...  

Species delimitation of closely related corals is often challenging due to high intraspecies morphological variation and phenotypic plasticity with a lack of characteristic features and scarcity of relevant molecular markers. Goniopora spp. are one such coralline group, and the species status of Goniopora lobata and Goniopora djiboutiensis, an Indian and Pacific Ocean hermatypic coral species complex, has been questioned on the basis of previous molecular and morphological analyses. To further examine the species boundaries between G. lobata and G. djiboutiensis in Japan, specimens collected from areas spanning from Ryukyu Island to temperate Japanese regions were morphologically identified based on traditional morphological descriptions. Then, the genetic structure of the G. lobata and G. djiboutiensis species complex was examined using six newly developed microsatellite markers. The majority of the collected specimens had intermediate morphologies, and a STRUCTURE analysis using the LOCPRIOR model based on typical G. lobata and G. djiboutiensis morphology indicated that there were no genetic differences between these morphologies. On the other hand, STRUCTURE analysis based on oceanographic regions revealed that there was a genetic break between the temperate and subtropical regions. This weak genetic break corresponded with the Kuroshio-associated barrier, which prevents larval transport between subtropical and temperate regions. This study confirms that the current morphological identification criteria for G. lobata and G. djiboutiensis do not match the existing genetic boundaries and thus the two should be regarded as a species complex. This study also highlighted the robustness of using a multi-locus population genetic approach, including a geographic context, to confirm the species boundaries of closely related species.


2021 ◽  
Vol 47 (1) ◽  
pp. 1-9
Author(s):  
Ihab Ghabeish ◽  
Mais Sweiss ◽  
Ghandi Anfoka

Whiteflies are economically important plant pests that cause damage to crops worldwide. This study aimed to update the status of whiteflies in Jordan by combining the classical morphological identification and the DNA markers using the mitochondrial cytochrome oxidase I (mtCOI) gene. Over the course of three consecutive years, 111 whiteflies were collected from different geographical regions and different plant hosts in Jordan. The results showed that, in addition to Bemisia tabaci, another nine different whitefly species were identified, including two species that were recorded for the first time in Jordan: Africaleurodes coffeacola, and Tetraleurodes neemani. A special focus has been given to economically important plant pests like the B. tabaci species complex. Three different diagnostic techniques were used to identify B. tabaci putative species based on mtCOI gene. All the collected samples of B. tabaci species complex were identified as Middle East–Asia Minor 1 (MEAM1) putative species.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 140-140 ◽  
Author(s):  
K. C. Correia ◽  
B. O. Souza ◽  
M. P. S. Câmara ◽  
S. J. Michereff

In October 2010, 2-year-old papaya (cv. Hawaii) trees with high incidence of stem rot were observed during a survey conducted in Rio Grande do Norte state, northeastern Brazil. Stems showing reddish brown-to-dark brown symptoms were collected and small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter–1 streptomycin sulfate. Plates were incubated at 25°C with a 12-h photopheriod for 4 days. Pure cultures with white, fluffy aerial mycelia were obtained by subculturing hyphal tips onto PDA. Identification was made using morphological characteristics and DNA based molecular techniques. Colonies grown on PDA and Spezieller Nährstoffarmer agar (SNA) for 10 days at 25°C with a 12-h photoperiod were used for morphological identification (3). The fungus produced cream sporodochia and two types of spores: microconidia were thin-walled, hyaline, ovoid, one-celled, and 6.8 to 14.6 × 2.3 to 4.2 μm; macroconidia were thick walled, hyaline, slightly curved, 3- to 5-celled, and 25.8 to 53.1 × 3.9 to 5.7 μm. Fifty spores of each type were measured. Rounded, thick-walled chlamydospores were produced, with two to four arranged together. On the basis of morphological characteristics (1), three fungal isolates (CMM-3825, CMM-3826, and CMM-3827) were identified as Fusarium solani (Mart.) Sacc. and were deposited in the Culture Collection of Phytopathogenic Fungi of the Universidade Federal Rural de Pernambuco (Recife, Brazil). Single-spore isolates were obtained and genomic DNA of the isolates was extracted and a portion of the translation elongation factor 1-alpha (EF1-α) gene of the isolates was amplified and sequenced (2). When compared with sequences available in the GenBank and Fusarium-ID databases, DNA sequences of the three isolates shared 99 to 100% sequence identity with F. solani species complex (GenBank Accession Nos. JF740784.1, DQ247523.1, and DQ247017.1). Representative sequences of the isolates were deposited in GenBank (Accession Nos. JQ808499, JQ808500, and JQ808501). Pathogenicity tests were conducted with four isolates on 3-month-old papaya (cv. Hawaii) seedlings. Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) on the stem (center) of each plant. Inoculation wounds were wrapped with Parafilm. Control seedlings received sterile PDA plugs. Inoculated and control seedlings (10 each) were kept in a greenhouse at 25 to 30°C. After 2 weeks, all inoculated seedlings showed reddish brown necrotic lesions in the stems. No symptoms were observed in the control plants. The pathogen was successfully reisolated from symptomatic plants to fulfill Koch's postulates. To our knowledge, this is the first report of F. solani species complex causing papaya stem rot in Brazil. Papaya is an important fruit crop in the northeastern Brazil and the occurrence of this disease needs to be taken into account in papaya production. References: (1) C. Booth. Fusarium Laboratory Guide to the Identification of the Major Species. CMI, Kew, England, 1977. (2) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


2020 ◽  
Vol 57 (5) ◽  
pp. 1675-1678 ◽  
Author(s):  
Van Lun Low ◽  
Wichai Srisuka ◽  
Atiporn Saeung ◽  
Tiong Kai Tan ◽  
Zubaidah Ya’cob ◽  
...  

Abstract Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0–2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.


Author(s):  
W. R. Schucany ◽  
G. H. Kelsoe ◽  
V. F. Allison

Accurate estimation of the size of spheroid organelles from thin sectioned material is often necessary, as uniquely homogenous populations of organelles such as vessicles, granules, or nuclei often are critically important in the morphological identification of similar cell types. However, the difficulty in obtaining accurate diameter measurements of thin sectioned organelles is well known. This difficulty is due to the extreme tenuity of the sectioned material as compared to the size of the intact organelle. In populations where low variance is suspected the traditional method of diameter estimation has been to measure literally hundreds of profiles and to describe the “largest” as representative of the “approximate maximal diameter”.


Author(s):  
Charles D. Humphrey ◽  
E. H. Cook ◽  
Karen A. McCaustland ◽  
Daniel W. Bradley

Enterically transmitted non-A, non-B hepatitis (ET-NANBH) is a type of hepatitis which is increasingly becoming a significant world health concern. As with hepatitis A virus (HAV), spread is by the fecal-oral mode of transmission. Until recently, the etiologic agent had not been isolated and identified. We have succeeded in the isolation and preliminary characterization of this virus and demonstrating that this agent can cause hepatic disease and seroconversion in experimental primates. Our characterization of this virus was facilitated by immune (IEM) and solid phase immune electron microscopic (SPIEM) methodologies.Many immune electron microscopy methodologies have been used for morphological identification and characterization of viruses. We have previously reported a highly effective solid phase immune electron microscopy procedure which facilitated identification of hepatitis A virus (HAV) in crude cell culture extracts. More recently we have reported utilization of the method for identification of an etiologic agent responsible for (ET-NANBH).


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


Sign in / Sign up

Export Citation Format

Share Document