scholarly journals Performance Investigation of refrigerant R-407C as a Replacement to refrigerant R22 in Window Air Conditioner Unit

2020 ◽  
Vol 1 (2) ◽  
pp. 37-43
Author(s):  
Ibrahim F. Abdulqadir ◽  
Badran M. Salim ◽  
Omar Shamdeen

The present work deal with the experimental study to retrofit the refrigerant R407c with the refrigerant R22 in the air conditioning unit at an ambient temperature range between 30-45°C. The main component of the experimental rig includes a window air conditioner with a refrigeration capacity of 2 Ton refrigeration that used refrigerant R22 as a working fluid in the experimental work. The refrigerant R22 is replaced with refrigerant R407C due to similar operation properties for the two refrigerants. The experimental results displayed the refrigeration effect and coefficient of performance COP of the R22 system are high as with those of the R407C system. The falls in the evaporator and condenser for the R407C system is lower than that of the R22 system. The temperature of discharge in the compressor for the system of refrigerant R22 is greater than that of the R407C system. Moreover, condensation temperature along the tube of the condenser is decreased with the increase of the distance for both refrigerants. The refrigerant R407C may be selected as a good alternate for R22 with an agreement difference in the two refrigerants’ performance. The system did not require replacement for any part of the AC unit.

2021 ◽  
Vol 4 ◽  
pp. 133-139
Author(s):  
Rikhard Ufie ◽  
Cendy S. Tupamahu ◽  
Sefnath J. E. Sarwuna ◽  
Jufraet Frans

Refrigerant R-22 is a substance that destroys the ozone layer, so that in the field of air conditioning it has begun to be replaced, among others with refrigerants R-32 and R-410a, and also R-290. Through this research, we want to know how much Coefficient of Performance (COP) and Refrigeration Capacity (Qe) can be produced for the four types of refrigerants. The study was carried out theoretically for the working conditions of the vapor compression cycle with an evaporation temperature (Tevap) of 0, -5, and -10oC, a further heated refrigerant temperature (ΔTSH) of 5 oC, a condensation temperature (Tkond) of 45 oC and a low-cold refrigerant temperature. (ΔTSC) 10 oC and compression power of 1 PK . The results of the study show that the Coefficient of Performance (COP) in the use of R-22 and R-290 is higher than the use of R-32 and R-410a, which are 4,920 respectively; 4,891; 4.690 and 4.409 when working at an evaporation temperature of 0 oC; 4.260; 4,234; 4.060 and 3.812 when working at an evaporation temperature of -5 oC; and amounted to 3,730; 3,685; 3,550 and 3,324 if working at an evaporation temperature of -10 oC. Based on the size of the COP, if this installation works with a compression power of 1 PK, then the cooling capacity of the R-22 and R-290 is higher than the R-32 and R-410a, which are 3,617 respectively. kW; 3,597 kW; 3,449 kW and 3,243 kW. If working at an evaporation temperature of 0 oC; 3.133 kW; 3.114 kW; 2,986 kW and 2,804 kW if working at an evaporation temperature of -5 oC; and 2,741 kW; 2,710 kW; 2,611 kW and 2,445 kW if working at an evaporation temperature of -10oC.


2018 ◽  
Vol 197 ◽  
pp. 08013
Author(s):  
Enang Suma Arifianto ◽  
Ega Taqwali Berman ◽  
Mutaufiq Mutaufiq

The purpose of this research is to know the improvement of car air conditioner system performance using an ejector. The study was conducted on a car engine with power 100 PS (74 kW) @ 5000 rpm. The test procedure is carried out under two conditions: the normal refrigeration cycle mode and the refrigeration cycle mode with the ejector. The working fluid used in the refrigeration cycle is R-134a. Performance data was measured on engine revolutions ranging from 1500 - 3000 rpm. Finally, the results showed that ejector usage on AC system generates an increase in the refrigeration effect and coefficient of performance (COP) of 25% and 22%, respectively. This has implications to better cooling capacity and compressor work that is lighter.


2011 ◽  
Vol 19 (02) ◽  
pp. 131-140
Author(s):  
QUBO LI ◽  
DEMISS A. AMIBE ◽  
NORBERT MÜLLER

An air conditioning system using water as refrigerant (R718) that compresses water vapor with multistage stage variable speed axial compressor with intercooling between stages by water injection is considered. Four stage compression with flash intercooling resulted in 50% improvement of coefficient of performance (COP) at full load compared to conventional refrigerants like R134a. The energy efficiency of an air conditioning unit is specified by seasonal energy efficiency ratio (SEER). SEER is defined as the ratio of cooling output of an air conditioner measured and electrical energy consumption as per AHRI 210/240 during cooling season. The SEER is computed after determining the evaporator cooling capacity and the electrical energy demand of the compressor at each bin temperature using assumed compressor isentropic efficiency, mechanical efficiency and electrical efficiency and multiplying by the weight of each bin temperature to determine the total for the cooling season. As a result of multistage compression, best part load performance of water as a refrigerant and operation of compressor near design point at part load due to variable speed drive, 50%–60% improvement in SEER is obtained compared to the best available in the market using conventional refrigerants such as R134a with single stage compression.


Author(s):  
Rahmat Iman Mainil ◽  
Ahmad Wisnu Sulaiman ◽  
Afdhal Kurniawan Mainil ◽  
Azridjal Aziz

The increase of condenser temperature and pressure in air-conditioning leads to decreased cooling capacity and the increase of power consumption. Evaporative cooling could improve the thermal performance of the system. In this study, the evaporative cooling module was installed before the condenser to reduce the inlet air temperature to the condenser unit. The impact of condenser air temperature on the air conditioning system's overall performance was determined by varying the cooling pad discharge water flowrate of 880, 1040, and 1200 mL/min. The cooling load of 2000 W was employed in this experiment. The obtained results were compared with the air conditioning without an evaporative cooling module. It shows that the coefficient of performance (COP) increases with the increase of discharge water flow rate. The highest COP obtained is 7.09 at the flow rate of 1200 mL/min. The compressor work reduces about 6.57 % as compared with the air conditioner without evaporative cooling application. Besides, the COP increases by 12. 95 % at the highest flow rate.


Author(s):  
Waseem Raza ◽  
Gwang Soo Ko ◽  
Youn Cheol Park

The rising need for thermal comfort has resulted in a rapid increase in refrigeration systems’ usage and, subsequently, the need for electricity for air-conditioning systems. The ejector system can be driven by a free or affordable low-temperature heat source such as waste heat as the primary source of energy instead of electricity. Heat-driven ejector refrigeration systems become a promising solution for reducing energy consumption to conventional compressor-based refrigeration technologies. An air-conditioning system that uses the ejector achieves better performance in terms of energy-saving. This paper presents a study on the combined driven refrigeration cycle based on ejectors to maximize cycle performance. The experimental setup is designed to determine the coefficient of performance (COP) with ejector nozzle sizes 1.8, 3.6, and 5.4[Formula: see text]mm, respectively. In this system, the R-134a refrigerant is considered as a working fluid. The results depict that the efficiency is higher than that of the conventional refrigeration method due to comparing the performance of the conventional refrigeration cycle and the combined driven refrigeration cycle. The modified cycle efficiency is better than the vapor compression cycle below 0∘C, which implies sustainability at low temperatures by using low-grade thermal energy. For the improvement of mechanical efficiency, proposed cycle can be easily used.


2019 ◽  
Vol 27 (02) ◽  
pp. 1930002 ◽  
Author(s):  
Aklilu Tesfamichael Baheta ◽  
Kar Kin Looi ◽  
Ahmed Nurye Oumer ◽  
Khairul Habib

The high reliability, the absence of working fluid and auxiliary pipes in the thermoelectric cooling application have attracted the attention of researchers in the last two decades. However, the use of thermoelectric air-conditioning system for building application has not been entirely explored due to its low coefficient of performance (COP) compared to the conventional air conditioning system. To overcome this primary limitation, different COP enhancement techniques of thermoelectric for air conditioning system building application are made available. This paper provides the recent development of thermoelectric air conditioning system in building applications, such as thermoelectric radiant panel ceiling, thermoelectric air duct system and thermoelectric cooling facades. It also provides the different strategies to enhance its performance in order to fit this technology in real building applications such as the integration of water-cooling system, phase change materials, evaporator cooling system and nanofluid micro-channel heat sinks. Lastly, the challenges of thermoelectric air-conditioning systems and future research directions are discussed.


2014 ◽  
Vol 493 ◽  
pp. 227-232 ◽  
Author(s):  
Kasni Sumeru ◽  
Henry Nasution ◽  
Farid Nasir Ani

Typically the split-type air conditioner uses a capillary tube as expansion device. To enhance the performance of the system, an ejector can be applied as expansion device to replace capillary tube. Based on the numerical modeling, the coefficient of performance (COP) of standard cycle using R410A as working fluid was slightly lower than that of R22. The use of an ejector as an expansion device on a split-type air conditioner using R410 increased the COP by 10.8%. Also, R410A has a lower total GWP impact compared with R22, which reduce negative impact on the environment.


Author(s):  
Y.I. Babenkov ◽  
◽  
A.I. Ozersky ◽  
V.V Romanov ◽  
G.A Galka ◽  
...  

In this work, experimental studies have been carried out to determine the main thermodynamic parameters of the refrigerating machine of an automobile air conditioner. The coefficient of performance, compressor operation, specific refrigeration capacity, mass flow, and compressor efficiency were determined. With the help of a multimedia device, the curves of the speed of the system, pressure sensors and temperature sensors were taken.


Author(s):  
Azridjal Aziz ◽  
Muhammad Rif’at Syahnan ◽  
Afdhal Kurniawan Mainil ◽  
Rahmat Iman Mainil

Split air conditioning systems produce reasonable amount of condensate which is usually not utilized and thrown away to the environment. On the other hand, it consumes a lot of energy during operation. The aim of this study is to investigate the improvement of air conditioning systems performance utilizing condensate. A direct evaporative cooling using condensate is incorporated on a 0.74 ton-cooling capacity of split air conditioning to decrease the air temperature before entering the condenser. Performances of the split air conditioning with and without direct evaporative cooling are compared and presented in this paper. The results show that the use of direct evaporative cooling using condensate into the air before passing through the condenser reduces the compressor discharge pressure. The decrease of the condenser pressure led to 4.7% and 7% reduction of power consumption for air conditioner without cooling load and air conditioner with 2000 W cooling load, respectively. The cooling effect and coefficient of performance (COP) increase with the decrease of compressor power. The use of direct evaporative cooling with condensate into the air before entering the condensing system can enhance the system performance and protect the environment.


2020 ◽  
Vol 82 (5) ◽  
Author(s):  
Andriyanto Setyawan

Obstructions of air flow in the outdoor unit could block the condenser air flow and reduce its heat rejection As a result, it could decrease the performance of a room air conditioning system. The paper presents the effects of the air flow obstruction of a condensing unit on the performance of a split-type air conditioner with refrigerant R410A. The study was conducted experimentally by employing front and side obstructions with varied distance from the condensing unit. The front obstruction of 100 cm height was applied at varied distance from 10 cm to 100 cm, while the side obstruction of the same height was applied at distance of 5, 10, and 15 cm. The presence of air flow obstructions results in the decrease of cooling capacity and coefficient of performance (COP). On the other hand, it increases the input power of the AC unit. From the experiment, it is obvious that the distance of front obstruction of 10 cm results in the reduction of cooling capacity by 46% and COP by 56%. It is also revealed that the distance of the front obstruction of 50 cm or more has no significant effect for the performance of the air conditioning unit. In addition, the side obstructions have the less significant effect than that of the front obstruction.


Sign in / Sign up

Export Citation Format

Share Document