scholarly journals Development of a Data Acquisition and Monitoring System Based on MODBUS RTU Communication Protocol

Author(s):  
H.M.K.K.M.B. Herath ◽  
S.V.A.S.H. Ariyathunge ◽  
H.D.N.S. Priyankara

MODBUS is a serial communication protocol use in industry, which developed by Modicon in 1979. The most common usage of the MODBUS communication protocol is the Programmable Logic Controllers (PLC). The aim of this study is to develop a system for acquiring and analyze measured values from the power measuring device and display them on C# developed GUI. The main objective is to develop an algorithm for MODBUS RTU communication protocol for data acquisition process. In this study, a single power measuring device was used with the aid of MODBUS RTU and RS-485 communication protocols, and data shown in the device was visualized on the C# developed GUI application and analyze them according to the user’s requirement. Data acquisitions from the holding registers were made by using the MODBUS Function Code three. The test results were observed and verified accuracy by performing several trials. Data was collected from the power measuring device which was attached to the industrial soft starter panel of a milling machine. Voltage, Current, Total Harmonic Distortion and Power Factor for each phase were retrieved to the C# devolved computer application and verify results with the real-time data of the power measuring device.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012041
Author(s):  
A Banerjee ◽  
A V Jindal ◽  
A Shankar ◽  
V Sachdeva ◽  
M Kanthi

Abstract The paper describes the design and working of a motorsport data acquisition, logging, live telemetry, and display system developed using the Controller Area Network (CAN) communication protocol as the backbone of the arrangement. The main controller of the CAN system is the myRIO which was programmed using LabVIEW. A Formula One car hosts over a hundred sensors during each of its races. The data acquisition/logging system, although does not directly affect the car’s performance, is indispensable when it comes to the testing and design phase of the car. Designers can validate their assumptions and calculations, real-time data during testing can be a safety indicator and it provides insight to the driver about the performance of the vehicle. The FPGA-based controller for CAN is designed for data acquisition and live telemetry system with the interest of the formula car team in mind. The design choices were made to improve and deliver a more effective system than the pre-existing ones. All choices of controllers, sensors, formatting were custom made for the requirements of the team. All programmable devices were coded individually to suit the system and the graphical user interface was designed internally. Data acquired by the proposed system helps in making sure that the car achieves the goals that were envisioned when it was designed.


2020 ◽  
Vol 4 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Neny Kurniawati, Kerelius, Sunariyati ◽  
Luqman Hakim, Dyah Ayu Pramoda Wardani, Widya Krestina ◽  
Dwi Tyas Setiawan, Ferry Purwanto, Diah K. Fatmala

Abstrak – Penelitian ini bertujuan untuk mengkaji pengaruh waktu paparan gelombang ultrasonik terhadap pengurangan jumlah koloni bakteri coliform pada sampel air sungai Kahayan. Pengambilan sampel air sungai dilakukan dengan teknik Grab Sampling menggunakan alat Kemmerer Sampler. Sampel air yang didapatkan diberikan paparan gelombang ultrasonik secara langsung, tanpa merubah kondisi lingkungan awal. Waktu paparan divariasikan pada 1 jam, 2 jam, 3 jam, 4 jam, dan 5 jam dengan frekuensi 40 kHz untuk memperoleh data waktu optimum. Uji coliform dilakukan dengan metode MPN, dengan tahapan uji pendugaan, uji penegasan, dan perhitungan koloni. Hasil uji MPN 24 jam setelah paparan menunjukkan bahwa penggunaan ultrasonik sebagai antibateri dapat optimum ketika diberikan paparan dengan waktu 3 jam, dengan efisiensi  96%. Kata kunci: antibakteri, coliform, ultrasonik, water treatment, sungai Kahayan  Abstract – This study aims to examine the effect of ultrasonic wave exposure time on reducing the number of coliform bacterial colonies in the Kahayan river water samples. River water sampling is done using the Grab Sampling technique using the Kemmerer Sampler tool. The water samples obtained were given direct ultrasonic wave exposure, without changing the initial environmental conditions. The exposure time is varied in 1 hour, 2 hours, 3 hours, 4 hours and 5 hours with a frequency of 40 kHz to obtain optimum time data. Coliform test was carried out by the MPN method, with the stages of the estimation test, affirmation test, and colony calculation. The MPN test results 24 hours after exposure showed that the use of ultrasonic as an antibody can be optimum when given exposure with a time of 3 hours, with an efficiency of 96%.Keywords : antibakterial, coliform, ultrasonic, water treatment, Kahayan river


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


2020 ◽  
Vol 3 (S1) ◽  
Author(s):  
Michael Brand ◽  
Davood Babazadeh ◽  
Carsten Krüger ◽  
Björn Siemers ◽  
Sebastian Lehnhoff

Abstract Modern power systems are cyber-physical systems with increasing relevance and influence of information and communication technology. This influence comprises all processes, functional, and non-functional aspects like functional correctness, safety, security, and reliability. An example of a process is the data acquisition process. Questions focused in this paper are, first, how one can trust in process data in a data acquisition process of a highly-complex cyber-physical power system. Second, how can the trust in process data be integrated into a state estimation to achieve estimated results in a way that it can reflect trustworthiness of that input?We present the concept of an anomaly-sensitive state estimation that tackles these questions. The concept is based on a multi-faceted trust model for power system network assessment. Furthermore, we provide a proof of concept by enriching measurements in the context of the IEEE 39-bus system with reasonable trust values. The proof of concept shows the benefits but also the limitations of the approach.


1986 ◽  
Vol 17 (5) ◽  
pp. 285-296 ◽  
Author(s):  
Massimo Annunziata ◽  
Giuseppe Cima ◽  
Paola Mantica ◽  
Giacomo R. Sechi

Author(s):  
Kiran Patel ◽  
Umesh Nagora ◽  
Hem C. Joshi ◽  
Surya Pathak ◽  
Kumarpalsinh A. Jadeja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document