scholarly journals Distribution and abundance of the alien Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in different forest stands in central Slovenia

2019 ◽  
Vol 12 (5) ◽  
pp. 451-458 ◽  
Author(s):  
T Hauptman ◽  
R Pavlin ◽  
P Grošelj ◽  
M Jurc
Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Christopher M. Ranger ◽  
Christopher T. Werle ◽  
Peter B. Schultz ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
...  

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated ‘standard mesh’ netting of 24 holes/cm2; (4) flooded tree with treated ‘fine mesh’ netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017–2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks.


2020 ◽  
Vol 153 (1) ◽  
pp. 103-120 ◽  
Author(s):  
Christopher M. Ranger ◽  
Michael E. Reding ◽  
Karla Addesso ◽  
Matthew Ginzel ◽  
Davide Rassati

AbstractExotic ambrosia beetles (Curculionidae: Scolytinae) in the tribe Xyleborini include destructive pests of trees growing in horticultural cropping systems. Three species are especially problematic: Xylosandrus compactus (Eichhoff), Xylosandrus crassiusculus (Motschulsky), and Xylosandrus germanus (Blandford). Due to similarities in their host tree interactions, this mini-review focuses on these three species with the goal of describing their host-selection behaviour, characterising associated semiochemicals, and assessing how these interactions relate to their management. All three of these Xylosandrus spp. attack a broad range of trees and shrubs. Physiologically stressed trees are preferentially attacked by X. crassiusculus and X. germanus, but the influence of stress on host selection by X. compactus is less clear. Ethanol is emitted from weakened trees in response to a variety of stressors, and it represents an important attractant for all three species. Other host-derived compounds tested are inconsistent or inactive. Verbenone inhibits attraction to ethanol, but the effect is inconsistent and does not prevent attacks. Integrating repellents and attractants into a push–pull management strategy has been ineffective for reducing attacks but could be optimised further. Overall, maintaining host vigour and minimising stress-induced ethanol are keys for managing these insects, particularly X. crassiusculus and X. germanus.


Zootaxa ◽  
2019 ◽  
Vol 4657 (2) ◽  
pp. 397-400 ◽  
Author(s):  
TINE HAUPTMAN ◽  
BARBARA PIŠKUR ◽  
MASSIMO FACCOLI ◽  
BLAŽ REKANJE ◽  
ANDRAŽ MARINČ ◽  
...  

In September 2017, during the monitoring of the non-native ambrosia beetle Xylosandrus germanus (Blandford, 1894), one specimen of an unknown ambrosia bark beetle species was collected in Slovenia. The specimen was trapped in an ethanol-baited trap located in Klavže (46° 09´ 39˝ N, 13° 48´ 7˝ E), in the western part of Slovenia. The most characteristic feature distinguishing the specimen from other known ambrosia beetle species occurring in Slovenia was the asperities that covered the entire surface of the pronotum. Based on the scientific literature concerning the non-native bark and ambrosia beetles in Europe (Kirkendall & Faccoli 2010) and illustrated identification keys (Rabaglia et al. 2006; Faccoli et al. 2009), we identified the beetle by its morphological characteristics as Ambrosiodmus rubricollis (Eichhoff, 1875). As a result of this find, a specific monitoring was set up in 2018 in Slovenia with the aim to improve the knowledge about occurrence and distribution of A. rubricollis in this country. 


2018 ◽  
Vol 115 (17) ◽  
pp. 4447-4452 ◽  
Author(s):  
Christopher M. Ranger ◽  
Peter H. W. Biedermann ◽  
Vipaporn Phuntumart ◽  
Gayathri U. Beligala ◽  
Satyaki Ghosh ◽  
...  

Animal–microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses.


1963 ◽  
Vol 95 (2) ◽  
pp. 137-139 ◽  
Author(s):  
R. J. Finnegan

During the course of a study of the bionomics of the pitted ambrosia beetle, Corthylus punctatissimus Zimm., in southern Ontario in 1959, the method of overwintering fungal spores and their transmission from brood galleries to healthy plants by the beetles was determined. This process was not clearly understood with respect to any of the ambrosia beetles until recently when Francke-Grosmann (1956) described in detail the different structures, present in several species of Platypodidae and Scolytidae, used in storing fungal spores. In Scolytidae she found that the females of some Trypodendron species store spores in tube-like structures within the prothorax (invaginations of the prothoracic wall); that females of Xylosandrus germanus Bldf. and Anisandrus dispar Fabr. keep spores overwinter in shallow pouches in the intersegmental membrane between the pronotum and mesonotum; that females of Xyleborinus saxeseni Ratz. store them in a small cavity at the anterior edge of the elytra; and that females of Xyleborus pfeili Ratz. store the spores in a receptacle on the “posterior” abdominal tergite. In some species of Platypodidae she found somewhat similar structures in both males and females. In 1959 Fernando (1959) described spore storage by the shot-hole borer, Xyleborus fornicatus Eichh. He found that females store spores in sacs on either side of the head, situated anterior to the brain, and that the sacs open by ducts into the upper part of the oral cavity.


2021 ◽  
Vol 114 (2) ◽  
pp. 839-847
Author(s):  
Michael E Reding ◽  
Christopher M Ranger ◽  
Peter B Schultz

Abstract The ambrosia beetles Xylosandrus germanus (Blandford) and Xylosandrus crassiusculus (Motschulsky) bore into flood-stressed trees to establish colonies, but the influence of flooding duration on colonization is unknown. This relationship was examined by flooding trees for various time periods and evaluating colonization. In one experiment, X. germanus bored into 20 dogwood (Cornus florida L.) trees during a 3-d flood treatment. Ten trees dissected that season had no offspring present in tunnels; the remaining trees appeared healthy and bloomed the following spring. In another experiment, dogwood trees were flooded for 3 or 7 d and then dissected to assess colonization. The incidence of superficial (short unbranched) and healed (callus tissue in entrance) tunnels was greater in the 3-d trees, while the incidence of tunnels with X. germanus or offspring was greater in the 7-d trees. Four experiments (three in Ohio and one in Virginia) had flood treatments of 0 (nonflooded), 3, 5, 7, and 10 d. Numbers of tunnel entrances, tunnels with X. germanus, and incidence of tunnels with offspring or live foundresses tended to increase as flood duration increased on apple (Malus × domestica Borkh.), dogwood, and redbud (Cercis canadensis L.) in Ohio and redbud in Virginia. Nonflooded trees in Ohio had no boring activity, but ambrosia beetles bored into three nonflooded trees in Virginia. Indicators of unsuccessful colonization, such as superficial tunnels and healing, decreased as flood duration increased. These results suggest tree crops may recover from boring by ambrosia beetles following short-duration flood events, and not necessarily require culling.


Author(s):  
Michael E Reding ◽  
Christopher M Ranger

Abstract Ethanol-treated bolts (tree stem sections) have potential as monitoring and pesticide screening tools for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Bolts were infused with ethanol by immersing them for at least 24 h. Attacks on ethanol-treated bolts by Xylosandrus species were compared with captures in ethanol-baited traps. Bolts infused in ethanol were usually as attractive or more attractive to Xylosandrus germanus (Blandford) than ethanol-baited bottle traps. Xylosandrus crassiusculus (Motschulsky) were more attracted to bolts than trap in some experiments, but numbers were low and differences were usually not significant. Two techniques for treating bolts with ethanol were compared. Attraction of ambrosia beetles to ethanol-infused bolts were compared with bolts with a drilled cavity filled with ethanol. Drilled bolts filled with ethanol were attractive to X. germanus and were reliably attacked, but numbers of beetles were often lower than in traps and infused bolts. Aged and fresh ethanol-infused bolts were compared with evaluate residual attractiveness. Bolts aged 7 d usually had fewer X. germanus than fresh bolts and traps, and bolts aged 14 d had no beetles. Ethanol-infused bolts from different species of trees were compared. Xylosandrus germanus attacked all species tested with more attacks usually in red maple (Acer rubrum L.). Anisandrus maiche Stark was attracted to ethanol-infused bolts indicating it may attack trees emitting ethanol. Bolts attracted fewer nontarget species than traps, but residual attraction was much less. The selectivity of ethanol-treated bolts for Xylosandrus species should make them useful for monitoring and screening pesticides against those species.


2010 ◽  
Vol 28 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Michael Reding ◽  
Jason Oliver ◽  
Peter Schultz ◽  
Chris Ranger

Abstract Ethanol-baited bottle traps were used to monitor spring flight activity of the ambrosia beetles Xylosandrus crassiusculus and Xylosandrus germanus in Ohio, Tennessee, and Virginia. The traps were deployed at three different heights to determine if height influenced captures. X. germanus was captured in all three states, while X. crassiusculus was captured in TN and VA only. Traps 0.5 m above the ground captured more X. germanus than traps at 1.7 or 3.0 m. Traps 0.5 or 1.7 m above the ground captured more X. crassiusculus than traps at 3.0 m. In TN and VA, first activity of X. crassiusculus and X. germanus occurred from mid-March to early April. In OH, first activity of X. germanus occurred early to mid-April. Analysis of attacks by X. germanus on Cornus florida revealed that more than 90% of the attacks occurred on the main trunk within 1 m (3 ft) of the ground. Monitoring will be most effective when traps are suspended 0.5 or < 1.7 m above the ground for X. germanus or X. crassiusculus, respectively. To detect first flight of X. crassiusculus or X. germanus, traps should be deployed by early to mid-March in TN and VA and late March in OH.


Biologia ◽  
2014 ◽  
Vol 69 (10) ◽  
Author(s):  
Juraj Galko ◽  
Christo Nikolov ◽  
Troy Kimoto ◽  
Andrej Kunca ◽  
Andrej Gubka ◽  
...  

AbstractThe attractiveness of ultra high release ethanol lures to ambrosia beetles in Slovakian oak forests was tested from 2010 to 2012. A total of 24,705 specimens were captured during this three year period with Xyleborinus saxesenii (Ratzeburg, 1837) representing 49.28% (12,174 specimens) of the total. Other dominant species captured in the traps were Anisandrus dispar (F., 1792) (27.84%), Xyleborus monographus (F., 1792) (9.72%) and Trypodendron signatum (F., 1792) (6.04%). During this experiment, Xylosandrus germanus (Blandford, 1894) was detected for the first time in Slovakia with an increase in capture each year (19, 40 and 77 specimens, respectively). Flight period for ambrosia beetles in Slovakia occurs from the beginning of April through the end of September. This is the first time that ethanol baited traps were deployed in Slovakian oak forests and the lures were an effective tool for monitoring native and non-native ambrosia beetles.


Sign in / Sign up

Export Citation Format

Share Document