scholarly journals DEPOSITION OF PETROLEUM HYDROCARBONS WITH SEDIMENT TRAPPED IN SNOW IN ROADSIDE AREAS

Author(s):  
Larysa Mykhailova ◽  
Tomas Fischer ◽  
Valentina Iurchenko

Total petroleum hydrocarbon (TPH) deposition rates were determined along various roads using the natural snow cover as deposition trap. Daily deposition rates decreased with distance from the roads, which coincided with long-term TPH accumulation in roadside soils. Scanning electron microscopy (SEM-EDX) of the snow meltwater sediment revealed occurrence of carbon-rich plaques, which were identified as hydrocarbons using FTIR-microscopy. GC-MS revealed that the compounds extracted from the sediment consisted of an unresolved complex hydrocarbon mixture (UCM). Individual n-alkanes could not be resolved in the sediment extract, whereas TPHs extracted from soils contained a series of n-alkanes peaking at C25-C27. The proportion of UCM compounds from TPHs decreased with distance from road. We conclude that high-boiling hydrocarbons bind to coarse mineral dust and/or to splash water and vehicle spray, which preferentially deposit within a 10 m roadside strip.

1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


Author(s):  
Williams, Janet Olufunmilayo ◽  
Aleruchi Owhonka

This study investigated the potential of Aspergillus sydowii and Fusarium lichenicola as mixed cultures in the biodegradation of Total Petroleum Hydrocarbons TPHs in oilfield wastewater. Oilfield wastewater was collected from an onshore oil producing platform and biodegradation of total petroleum hydrocarbons was investigated using standard methods. Fungi were isolated from oilfield wastewater contaminated soils obtained from the vicinity of the oil producing platform. Experimental control set-up and treatment with mixed culture of fungal isolates were periodically analyzed on days 7 and 21 intervals for total petroleum hydrocarbon degradation using Gas Chromatography (GC). The total amount of TPHs on day 1 recorded 381. 871 mg/l.  The amount of TPHs on days 7 and 21 in the mixed culture of fungi was 108.975 mg/l and 21.105 mg/l respectively while TPHs in control was 342.891 mg/l and 240.749 mg/l respectively. There was a significant difference between the mixed culture and the control on days 7 and 21 at p≤0.05. The results therefore revealed actual and significant reduction of TPHs in the mixed culture. In addition, there was clearance of n-alkanes by the mixed culture. This suggests that fungi have great potentials in biodegradation of TPHs and in remediation of TPH contaminated environments.


2018 ◽  
Vol 2 (2) ◽  
pp. 35
Author(s):  
Prasetyo Handrianto

Exploitation and exploration activities will produce sewage sludge and crude oil spills that cause pollution to the environment and upgrading to the environment, biology and soil chemistry. Monitoring of oil pollution conditions on the soil can be done by detection of all hydrocarbon components, or what is called the total petroleum hydrocarbon (TPH). According to its components, this total petroleum hydrocarbon (TPH) can be classified into 3 points, aliphatic, alicyclic, and aromatic. One of the biological efforts that can be used to overcome petroleum pollution is by using bioremediation technology. There are several methods in bioremediation, one of which is the biostimulation method, where the growth of the original hydrocarbon decomposers is stimulated by adding nutrients, oxygen, pH optimization and temperature. Hydrocarbonoclastic microorganisms have characteristic not possessed by other microorganisms, namely their ability to excrete hydroxylase enzymes, which are hydrocarbon oxidizing enzymes, so that these bacteria can degrade petroleum hydrocarbons. Biodegradation can be formed if there is a structural transformation so that cahnges in molecular integrity occur. This process is a series of enzymatic or biochemical reaction that require ideal environmental conditions with the growth and proliferation of microorganisms. Something that need to be known before remediation are pollutants (organic or inorganic), degraded/ not, dangerous/ not, how many pollutants pollute the soil, the ratio of carbon (C), Nitrogen (N), and phophorus (P), soil type, soil conditions (wet dry), and how long pollutants have been deposited in these locations


2016 ◽  
Vol 13 (3) ◽  
pp. 707-722 ◽  
Author(s):  
K. Zając ◽  
C. Blodau

Abstract. Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH4 15NO3) at a rate of 2.3 g N m−2 yr−1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m−2 yr−1) up to 12.2 mg g−1 (Frölichshaier Sattelmoor, 4.7–6.0 g N m−2 yr−1). In peat from Degerö, nitrate and ammonium concentrations were below 3 mg L−1, whereas up to 30 (nitrate) and 11 mg L−1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2–0.35 mg g−1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids, and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m−2 yr−1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.


1985 ◽  
Vol 1985 (1) ◽  
pp. 547-551 ◽  
Author(s):  
Anthony H. Knap ◽  
Sheila C. Wyers ◽  
Richard E. Dodge ◽  
Thomas D. Sleeter ◽  
Harold R. Frith ◽  
...  

ABSTRACT The Coroil project in Bermuda has been an intensive, multidisciplinary study of the effects of physically and chemically dispersed Arabian light crude oil on the main reef-building coral in Bermuda, Diploria strigosa. This paper reviews the results of this three year study. Corals were exposed to dispersed oil in a flow system, using spectrofluorimetry and gas chromatography to characterize and quantify the dose. Appropriate controls were included in all experiments. The studies included effects of dispersed oil on survival and behavior, the uptake and depuration of petroleum hydrocarbons, photosynthesis by symbiotic zoo-xanthellae, and skeletal growth. In behavioral and growth studies, corals were dosed in the laboratory or in the field. Laboratory-dosed colonies were returned to the field to determine long-term effects. Exposure to 20 ppm of chemically dispersed oil for 24 hours induced various behavioral reactions, including tentacle retraction, tissue contraction and mesenterial filament extrusion. However, effects were typically sublethal, and recovery was usually evident within four days. These symptoms were not significant in long-term transplants. Using the alizarin red staining technique, no long-term effects on skeletal growth could be detected following any of our treatments. Depuration studies using (9-I4C) -phenanthrene and gas chromatographic analysis showed that the uptake of petroleum hydrocarbons by the tissue of Diploria was rapid, but 75 percent of the hydrocarbon dose was eliminated within 14 days. Photosynthesis studies showed a short-term inhibition of photosynthesis only by chemically dispersed oil, with lipid synthesis being most severely affected. Total recovery occurred within 24 hours of exposure.


1987 ◽  
Vol 67 (1) ◽  
pp. 199-203 ◽  
Author(s):  
R. G. KACHANOSKI

Atmospheric deposition rates of 90Sr and analysis of soil samples from non-eroded sites indicated base levels of total soil 137Cs were approximately 2700 Bq m−2 in southern Ontario in 1985. Measured 137Cs losses (1965–1976) from long-term runoff plots were significantly correlated to measured soil losses during the same period. Monitoring temporal changes in soil 137Cs should be an accurate method of estimating soil loss in southern Ontario. Key words: Soil loss, 137Cs, Ontario, runoff plots


Sign in / Sign up

Export Citation Format

Share Document